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Identification of the primary products of cyclo-oxygenase (COX)/prostaglandin synthase(s), which occurred between 1958 and
1976, was followed by a classification system for prostanoid receptors (DP, EP1, EP2 . . .) based mainly on the pharmacological
actions of natural and synthetic agonists and a few antagonists. The design of potent selective antagonists was rapid for certain
prostanoid receptors (EP1, TP), slow for others (FP, IP) and has yet to be achieved in certain cases (EP2). While some antagonists
are structurally related to the natural agonist, most recent compounds are ‘non-prostanoid’ (often acyl-sulphonamides) and
have emerged from high-throughput screening of compound libraries, made possible by the development of (functional)
assays involving single recombinant prostanoid receptors. Selective antagonists have been crucial to defining the roles of PGD2

(acting on DP1 and DP2 receptors) and PGE2 (on EP1 and EP4 receptors) in various inflammatory conditions; there are clear
opportunities for therapeutic intervention. The vast endeavour on TP (thromboxane) antagonists is considered in relation to
their limited pharmaceutical success in the cardiovascular area. Correspondingly, the clinical utility of IP (prostacyclin)
antagonists is assessed in relation to the cloud hanging over the long-term safety of selective COX-2 inhibitors. Aspirin apart,
COX inhibitors broadly suppress all prostanoid pathways, while high selectivity has been a major goal in receptor antagonist
development; more targeted therapy may require an intermediate position with defined antagonist selectivity profiles. This
review is intended to provide overviews of each antagonist class (including prostamide antagonists), covering major devel-
opment strategies and current and potential clinical usage.
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Introduction

The pharmacological classification for prostanoid receptors
was developed on the basis that each receptor preferentially
recognizes one of the major natural prostaglandins (PGs).
Thus, PGD2 preferentially activates the DP receptor, PGE2 pref-

erentially activates the EP receptor, with the same applying
to PGF2a/FP receptor and PGI2 (prostacyclin)/IP receptor
(Coleman et al., 1994b). In the case of the TP receptor, both
thromboxane A2 (TXA2) and its precursor PGH2 are potent
agonists. There are two distinct subtypes of DP receptor, DP1

and DP2; the latter has also been called CRTh2 (chemoattrac-
tant receptor-homologous molecule expressed on T helper 2
cells). Of the four EP receptor subtypes, EP1 and EP3 generally
elicit excitatory actions, while EP2 and EP4 elicit inhibitory
actions on cell function. All prostanoid receptors belong to
the G protein-coupled receptor superfamily of cell-surface
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receptors. Each has seven transmembrane (TM)-spanning seg-
ments and may couple to one or more signal-transduction
processes. In addition, mRNA splicing variants have been
discovered for DP1, EP1, EP3, EP4, FP and TP receptors (see
Pierce and Regan, 1998).

The repertoire of bioactive oxygenated lipids and signal
transduction mechanisms is expanded by homodimerization
and heterodimerization between different prostanoid recep-
tors. For example, an isoprostane binding site is created by
IP/TPa heterodimerization (Wilson et al., 2004). Moreover, the
prostamide (prostaglandin-ethanolamide) recognition site
appears to result from heterodimerization of wild type and
alternatively spliced FP receptor variants (Liang et al., 2008).
Prostanoid receptors may also complex with non-prostanoid
receptors, for example, EP1 receptor with b2-adrenoceptor, but
discussion of these interactions is outside the scope of this
review. The receptor/second messenger nomenclature used in
the review conforms to this journal’s Guide to Receptors and
Channels (Alexander et al., 2008).

Assay systems and antagonist development

The initial pharmacological differentiation of prostanoid
receptors relied heavily on isolated tissue studies, with ileum,
trachea and vas deferens of the guinea pig being especially
important (Jones et al., 1982; Coleman et al., 1984; 1987;
1994a; Dong et al., 1986; see Chen et al., 2001 for experimen-

tal details). Isolated tissue preparations are still used today as
they often reflect phenomena that occur in the integrated,
living mammal. In addition, they still provide evidence for
new receptor entities, as shown by the critical role of the cat
iris preparation in the elucidation of prostamide pharmacol-
ogy (Matias et al., 2004; Woodward et al., 2007; 2008). Studies
on isolated and cultured cells have also been important in
building the pharmacological classification of prostanoid
receptors (Coleman et al., 1984; Eglen and Whiting, 1988;
Woodward et al., 1995a,b).

Although of low throughput, isolated tissue studies have
been critical to the discovery of prostanoid antagonists, par-
ticularly for DP1, EP1 and TP receptors. However, it is remark-
able that antagonists for other receptors (EP2, EP3, FP and IP)
have been slow to emerge following discovery of the natural
ligand/receptor; several reasons may account for this situa-
tion. Partial agonism is found in closely related analogues of
the natural ligands for DP1 and TP receptors (Table 1), thereby
providing inroads to pure antagonists. However, partial
agonism may not always be readily recognized. For example,
taprostene, an early analogue of PGI2 (Müller et al., 1983), was
only shown to be an IP partial agonist in 2004 (Chan and
Jones, 2004). Furthermore, partial agonism may not always
translate into pure antagonism. Thus, some of the many ‘non-
prostanoid prostacyclin mimetics’ synthesized (see later)
show IP partial agonism (Merritt et al., 1991a; Jones et al.,
1997; Seiler et al., 1997; Kam et al., 2001), but IP antagonists
have apparently not emerged from this grouping. Moreover, a

Table 1 Prostanoid receptor agonists relevant to defining antagonist profiles

Prostanoid receptor Full agonist Partial agonist

High selectivity Moderate selectivity

DP1 BW-245C BW-192C86a

DP2 15(R) PGD2, 15(R)-15-methyl PGD2

13,14-dihydro-15-oxo PGD2

EP1 ONO-DI-004 17-Phenyl PGE2 Iloprostb,c

EP2 ONO-AE1-259, CAY-10399d Butaprost-FA, CP-533536e

19(R)-hydroxy PGE2
f

EP3 ONO-AE-248, SC-46275 Sulprostone, MB-28767 ONO-AP-324g

EP4 ONO-AE1-329, tetrazolo PGE1
h (PGE2)i

FP Fluprostenol, latanoprost-FA Cloprostenol AL-8810j,k,l

IP Cicaprost AFP-07, iloprost Octimibatem, taprostenen

TP STA2, U-46619 CTA2
o, PTA2

o,p, U-44069p

Information on the non-referenced agonists may be obtained from Jones (2004) and this journal’s Guide to Receptors and Channels edited by Alexander et al.
(2008). In older publications, fluprostenol = ICI-81008, cloprostenol = ICI-80996, cicaprost = ZK-96480 and iloprost = ZK-36374.
FA, free acid.
aSeries of bicyclic-hydantoin prostanoids (Leff and Giles, 1992).
bDong et al. (1986).
cBoie et al. (1997).
dTani et al. (2002).
eParalkar et al. (2003).
fWoodward et al. (1993a).
gJones et al. (1998).
hAnalogue 19a in Billot et al. (2003).
iUtility on high-sensitivity EP4 systems.
jGriffin et al. (1999).
kWoodward et al. (2007).
lSharif et al. (2008).
mMerritt et al. (1991a,b).
nChan and Jones (2004).
oArmstrong et al. (1985).
pJones et al. (1982).
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large range of compounds block TP receptors (see later); this
expansiveness may simply not apply to other prostanoid
receptors. Finally, there has not been widespread commercial
drive to develop EP2 antagonists, for example, owing to a
perceived lack of therapeutic utility (see later).

Dramatic progress in antagonist development was seen fol-
lowing cloning of the various prostanoid receptors in the
early 1990s: DP1 (Boie et al., 1995), DP2 (Hirai et al., 2001), EP1

(Funk et al., 1993a), EP2 (Regan et al., 1994), EP3 (Yang et al.,
1994), EP4 (Bastien et al., 1994), FP (Abramovitz et al., 1994),
IP (Namba et al., 1994), TP (Hirata et al., 1991). Stable over-
expression of each prostanoid receptor in carrier cell lines
allowed high-throughput radioligand binding and functional
studies using 96- or even 384-well plate format. Thus, chemi-
cal library screening resulted in the discovery of new non-
prostanoid scaffolds as leads, from which potent and selective
agonists and antagonists were designed. Inspection of
Figures 1–8 will reveal the prevalence of aryl-sulphonamido
linkages in the various antagonist classes. Non-prostanoid
structures provide a practical approach to obtaining new
prostanoid-based therapies, as the issues of bioavailability,
metabolic stability and cost of synthesis that surround PG
analogues are avoided.

Selective agonists for prostanoid receptors

Selective agonists are the pharmacological counterparts of
antagonists and, as such, fulfil an important role in receptor
characterization. In terms of prostanoid receptors, three of the
natural ligands, PGH2/TXA2 and PGI2, are unstable under
physiological conditions and are usually replaced by U-46619
and cicaprost respectively (Table 1). In addition, there are
potential problems with certain EP agonists synthesized as C1
methyl esters, for example, butaprost (EP2) and SC-46275
(EP3); full agonist potency is only realized after (enzymatic)
hydrolysis of the ester within the tissue. Ono Pharmaceuticals
have synthesized selective agonists for EP1 (ONO-DI-004), EP2

(ONO-AE1-259), EP3 (ONO-AE-248) and EP4 (ONO-AE1-329)
receptors (Suzawa et al., 2000). However, the rather modest
potencies of ONO-DI-004 and ONO-AE-248 may restrict their
utility in full Schild antagonism protocols (R.L. Jones et al.,
2008, submitted). Partial agonists for DP1, EP1, EP3, FP, IP and
TP receptors are known (Table 1); their use in antagonist
protocols may present difficulties of interpretation.

As drugs, notably for systemic administration, selective
prostanoid mimetics are a high-risk proposition because of
the myriad of unwanted side effects that may occur. As
such, the future of prostanoid-based therapies appears to
reside in the main in selective PG synthase inhibitors and
prostanoid receptor antagonists.

Antagonist protocols

The Schild protocol for inferring the nature of competition
and determining the affinity constant of an antagonist
remains the gold standard (see Colquhoun, 2007). It is appli-
cable to both isolated tissue and the ever-increasing number
of recombinant (rc) receptor/cell-based assay methods usually
involving Ca2+ mobilization or cAMP generation. While the

latter methods are given to high throughput and precision,
care must be taken with high-affinity antagonists in the Ca2+

assays as the agonist response is usually measured as the
peak of the transient Ca2+ signal, which may occur before
re-equilibration of antagonist occupancy is complete. The
majority of the data given in Table 2 relate to pA2 values
derived using the Schild protocol, with emphasis on human,
guinea pig and rat isolated preparations. Binding data (pref-
erably pKi) are given where functional information is not
available. There are considerable binding data on mouse pros-
tanoid receptors, but little affinity data in functional systems.

Inhibition-curve (or Cheng-Prusoff) protocols have been
used infrequently in prostanoid receptor studies. Bley et al.
(2006) estimated the pA2 of the IP antagonists RO-1138452 and
RO-3244794 using carbacyclin as the fixed-concentration
agonist in a human rc-IP receptor – cAMP assay, but failed to
use the modified form of the Cheng-Prusoff equation (Craig,
1993; Lazareno and Birdsall, 1993; Leff and Dougall, 1993).
These protocols have the advantages of operating over a lower
agonist concentration range than Schild protocols and provid-
ing direct observation of the rate of onset of antagonism. The
latter is important in recognizing the slow approach to steady
state that occurs with high-affinity antagonists at low concen-
tration, and also with highly lipophilic antagonists (Jones
et al., 2008) that regularly emerge from combinatorial chem-
istry – high-throughput screening. Ultimately, it is important
and even preferable to define the pharmacology in the human
target tissue; human rc-receptor assays are a useful accompa-
niment. Successful drugs require the correct pharmacological
attributes, but physical chemical properties are also important.

DP1 receptor antagonists

Development
Antagonists for, what we now know to be, the DP1 receptor
subtype, were first described in the 1970s and early 1980s.
Examples include N-0164 (MacIntyre and Gordon, 1977),
diphloretin phosphate (Westwick and Webb, 1978) and
desacetyl-1-nantradol (Horne, 1984), but none of these com-
pounds exhibit the potency and selectivity essential for
unambiguous receptor classification. The simple xanthone-
carboxylic acid AH-6809 (Keery and Lumley, 1988) has suffi-
cient DP1 affinity (pA2 = 5.9–6.6, Table 2), but it has been
mainly employed as an EP1 antagonist (see later). Indeed, the
hydantoin derivative, BW-A868C (Figure 1) has been the only
selective, surmountable and competitive DP1 antagonist (pA2

> 9 for the human subtype) readily available to pharmacolo-
gists (Giles et al., 1989; Lydford et al., 1996c). The N-benzyl
substituent is crucial for antagonist activity; in a related series
of bicyclic-hydantoin analogues a progression from full
agonism to virtually pure antagonism is seen with hydrogen,
methyl, ethyl and n-propyl substituents on N10 (Giles and
Leff, 1992). BW-A868C also has low affinity (pA2 = 5.1) for the
EP4 subtype (Lydford et al., 1996c). ZK-138357 (Schering AG)
is a moderate-affinity DP1 antagonist (Table 2) with some
structural similarity to BW-A868C.

Recently, the potential pathological role of PGD2, especially
in allergic disorders, has been revived resulting in the discov-
ery and evaluation of highly selective DP1 antagonists of
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Table 2 Affinities of prostanoid receptor antagonists in functional isolated preparations

Antagonist Species Tissue system Agonist pA2 Reference

DP1 receptor
AH-6809 Human Neutrophil/superoxide release BW-245C 6.55 Wheeldon and Vardey (1993)

BW-245C 6.59 Lydford et al. (1996a)
Platelet/aggregation PGD2 6.27a Keery and Lumley (1988)

Cow Embryonic tracheal fibroblast/cAMP PGD2 6.36 Ito et al. (1990)
Rabbit Saphenous vein BW-245C 5.93 Lydford et al. (1996c)

BW-A868C Human Neutrophil/superoxide release BW-245C 9.46 Lydford et al. (1996a)
Platelet/aggregation BW-245C 9.26 Giles et al. (1989)
Pulmonary vein PGD2 7.84 Walch et al. (1999)
Uterus (non-pregnant) BW-245C 8.3 Senior et al. (1992)
Uterus (pregnant) BW-245C 8.6 Senior et al. (1993)

Cow Embryonic tracheal fibroblast/cAMP BW-245C 8.0 Crider et al. (1999)
Dog Nasal vein BW-245C 7.3 Liu et al. (1996a)

Tracheal epithelium/Cl- secretion BW-245C 8.16 Liu et al. (1996b)
Rabbit Jugular vein BW-245C 8.73 Giles et al. (1989)

Saphenous vein BW-245C 8.50 Lydford et al. (1996c)
MK-0524 (Laropiprant) Human rc-DP1/HEK-293E/binding [3H]-PGD2 10.5b Sturino et al. (2007)

Platelet/cAMP PGD2 10.05c Sturino et al. (2007)
ONO-AE3-237 Human rc-DP1/CHO/binding [3H]-PGD2 7.74 Torisu et al. (2004c)
S-5751 Human Platelet/cAMP PGD2 9.02b,c Arimura et al. (2001)

Guinea pig Platelet/cAMP PGD2 7.50b,c Arimura et al. (2001)
ZK-138357 Human Neutrophil/superoxide release BW-245C 7.25 Lydford et al. (1996a)

Rabbit Saphenous vein BW-245C 5.05 Lydford et al. (1996a)
Rat Peritoneal mast cell BW-245C ~6.0 Chan et al. (2000)

Compound 1 Human Platelet/binding [3H]-PGD2 6.22 Mitsumori et al. (2003a)
Compound 2 Human Platelet/binding [3H]-PGD2 7.62 Mitsumori et al. (2003a)
Compound 3 Human rc-DP1/HEK-293-Ga15/Ca2+ BW-245C [~7.4] Krauss et al. (2005)
Compound 4 Human rc-DP1/CHO/binding [3H]-PGD2 8.27 Torisu et al. (2004c)
Compound 5 Human rc-DP1/HEK-293/binding [3H]-PGD2 9.0 Beaulieu et al. (2008)

DP2 receptor
BAY-u3405
(Ramatroban)

Human rc-DP2/CHO/GTPgS binding PGD2 7.44 Mathiesen et al. (2006)
Eosinophil/shape change PGD2 ~8.0a Mathiesen et al. (2006)

K-117 Human rc-DP2/HEK-293/binding [3H]-PGD2 8.26 Mimura et al. (2005)
K-604 Human rc-DP2/HEK-293/binding [3H]-PGD2 7.96 Mimura et al. (2005)
TM-30089d

(CAY-10471)
Human rc-DP2/HEK-293/binding [3H]-PGD2 8.74 Mathiesen et al. (2006)

9.22 Ulven and Kostenis (2005)
Compound 6 Human rc-DP2/pre-B L1.2/Ca2+ PGD2 [6.8] Bauer et al. (2002)
Compound 7 Human rc-DP2/HEK-293/binding [3H]-PGD2 8.64c Birkinshaw et al. (2006)
Compound 8 Human rc-DP2/HEK-293/binding [3H]-PGD2 [9.40]c Bonnert and Rasul (2004)
Compound 9 Human rc-DP2/CHO/binding [3H]-PGD2 7.17 Armer et al. (2005)

Eosinophil/shape change PGD2 7.13c Armer et al. (2005)
Th2-lymphocyte/chemotaxis PGD2 7.17c Armer et al. (2005)

Compound 10 Human rc-DP2/CHO/Ca2+ PGD2 [8.53] Fretz et al. (2005)
Compound 11 Human rc-DP2/HEK-293/binding [3H]-PGD2 [9.0] Bonnert et al. (2005c)

EP1 receptor
AH-6809 Human rc-EP1/HEK-293E/reporter gene Iloprost ~6.4 Durocher et al. (2000)

Pulmonary vein Sulprostone 5.52 Walch et al. (2001)
Guinea pig Ileum PGE2 6.8 Coleman et al. (1987)

Ileum PGE2 7.39 Eglen and Whiting (1988)
Ileum PGE1 7.42 Eglen and Whiting (1988)
Ileum 16,16-DM PGE2 7.59 Eglen and Whiting (1988)
Trachea 16,16-DM PGE2 7.48 Eglen and Whiting (1988)
Trachea 17-Phenyl PGE2 7.35 Lawrence et al. (1992)

GW-848687 Human rc-EP1/not given/reporter gene PGE2 9.1 Giblin et al. (2007)
MF-266-1 Human rc-EP1/HEK-293/Ca2+ PGE2 7.8 Clark et al. (2008)
ONO-8711 Mouse rc-EP1/CHO/binding [3H]-PGE2 8.77 Watanabe et al. (1999)

Human rc-EP1/CHO/binding [3H]-PGE2 9.22 Watanabe et al. (1999)
ONO-8713 Mouse rc-EP1/not given/binding [3H]-PGE2 9.5 Narumiya and Fitzgerald (2001)
SC-19220 Guinea pig Ileum PGE2 5.5 Sanner (1969)

Ileum PGE2 5.6 Bennett and Posner (1971)
Trachea PGF2a 6.6 Farmer et al. (1974)

SC-51089 Human rc-EP1/HEK-293E/reporter gene Iloprost 6.94 Durocher et al. (2000)
Guinea pig Ileum PGE2 6.5 Hallinan et al. (1993)

Ileum PGE2 6.7 Sametz et al. (2000)
SC-51322 Human rc-EP1/HEK-293E/reporter gene Iloprost 8.80 Durocher et al. (2000)

Guinea pig Ileum PGE2 8.1 Hallinan et al. (1994)
Trachea 17-Phenyl PGE2 8.45 Hung et al. (2006)

Compound 13 Mouse rc-EP1/CHO/Ca2+ PGE2 8.25c Naganawa et al. (2006)
Compound 14 Human rc-EP1/HEK-293E/binding [3H]-PGE2 8.0 Ruel et al. (1999)
Compound 15 Human rc- EP1/CHO/Ca2+ PGE2 8.2 Hall et al. (2007b)

EP2 receptor
AH-6809 Human rc-EP2/COS-7/cAMP PGE2 ~6.5 Woodward et al. (1995)

Bronchus PGE2 5.78 Norel et al. (1999)
Guinea pig Trachea PGE2 5.7e KJ Ong and RL Jones (unpublished)
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Table 2 Continued

Antagonist Species Tissue system Agonist pA2 Reference

EP3 receptor
DG-041 Human rc-EP3/Chem-1/Ca2+ PGE2 8.09c Singh et al. (2009)
L-798106 Guinea pig Aorta 17-Phenyl PGE2

f 7.96 Jones et al. (2008)
Trachea Sulprostone 7.82 Clarke et al. (2004)
Vas deferens Sulprostone 7.48 Clarke et al. (2004)

L-826266 Human rc-EP3/HEK-293E/Ca2+ PGE2 7.97 R.L. Jones et al. (2008, submitted)
Erythroleukaemia cell/cAMP Sulprostone 8.35 Clark et al. (2008)

Guinea pig Aorta 17-Phenyl PGE2 7.58 R.L. Jones et al. (2008, submitted)
ONO-AE3-240 Mouse rc-EP3/not given/Ca2+ PGE2 8.8 Amano et al. (2003)
Compound 17 Human Erythroleukaemia cell/cAMP Sulprostone 6.89 Gallant et al. (2002)
Compound 18 Human rc-EP3/HEK-293E/binding [3H]-PGE2 7.7 Juteau et al. (2001)
Compound 19 Human rc-EP3/HEK-293E/cAMP PGE2 8.22 Belley et al. (2005)

EP4 receptor
AH-23848 Sheep Ductus arteriosus PGE2 ~5.2a Bouayad et al. (2001)

Human Middle cerebral artery PGE2 5.7 Davis et al. (2004)
Pig Saphenous vein PGE2 5.0 Coleman et al. (1994a)
Rabbit Saphenous vein PGE2 4.96 Lydford et al. (1996b)
Mouse rc-EP4/CHO/cAMP PGE2 5.3 Nishigaki et al. (1995)

BGC-20-1531 Human rc-EP4/HEK-293E/cAMP PGE2 7.6 Maubach et al. (2009)
Middle cerebral artery PGE2 7.8 Maubach et al. (2009)

Dog Middle meningeal artery PGE2 7.7 Maubach et al. (2009)
CJ-023423 Human rc-EP4/HEK-293/cAMP PGE2 8.3 Nakao et al. (2007)

Rat rc-EP4/HEK-293/cAMP PGE2 8.2 Nakao et al. (2007)
CJ-042794 Human rc-EP4/HEK-293/cAMP PGE2 8.6 Murase et al. (2008b)

Rat rc-EP4/HEK-293/cAMP PGE2 8.7 Murase et al. (2008a)
GW-627368 Human rc-EP4/HEK-293/cAMP PGE2

b 7.9 Wilson et al. (2006)
Pulmonary vein ONO-AE1-329 7.06 Foudi et al. (2008)

Pig Saphenous vein PGE2 9.2 Wilson et al. (2006)
Rabbit Saphenous vein PGE2

g �8.5 Jones and Chan. (2005)
L-161982 Human rc-EP4/HEK-293/cAMP PGE2 ~8.5 Machwate et al. (2001)

BEAS-2B cell/CRE reporter ONO-AE1-329 9.14 L.M. Ayer and M.A. Giembycz
(unpublished)

Middle cerebral artery PGE2 8.4 Davis et al. (2004)
Rat rc-EP4/HEK-293/binding [3H]-PGE2 7.50 Machwate et al. (2001)

Periosteal cell/cAMP PGE2 7.0c Machwate et al. (2001)
MF-498 Human rc-EP4/HEK-293/cAMP PGE2 8.77c Clark et al. (2008)
ONO-AE2-227 Mouse rc-EP4/CHO/cAMP PGE2 8.0c Mutoh et al. (2002)
ONO-AE3-208 Mouse rc-EP4/not given/binding [3H]-PGE2 8.89 Kabashima et al. (2002)
Compound 20 Human rc-EP4/HEK-293E/cAMP PGE2 8.49c Burch et al. (2008)

FP receptor
AS-604872 Human rc-FP/HEK-293E/PI PGF2a 7.33c Cirillo et al. (2007)
THG-113 Pig Retinal blood vessel PGF2a [6.34]c Peri et al. (2006)
THG-113.31 Pig Retinal blood vessel PGF2a [8.00]c Peri et al. (2006)
THG-113.824 Pig Retinal blood vessel PGF2a [8.96]c Peri et al. (2006)
THG-113.825 Pig Retinal blood vessel PGF2a 7.21c Peri et al. (2006)

Prostamide F receptor
AGN-204396 Cat Iris sphincter Prostamide F2a 5.64 Woodward et al. (2007)

IP receptor
RO-1138452 Human rc-IP/CHO/cAMP Carbacyclin 9.0 Bley et al. (2006)

Pulmonary artery Cicaprost 8.20 Jones et al. (2006)
Guinea pig Aorta Cicaprost 8.39 Jones et al. (2006)
Rabbit Mesenteric artery Cicaprost 8.12 Jones et al. (2006)

RO-3244794 Human rc-IP/CHO/cAMP Carbacyclin 8.5 Bley et al. (2006)
BEAS-2B cell/CRE reporter Taprostene 9.24 L.A. Ayer and M.A. Giembycz

(unpublished)
Compound 21 Rat rc-IP/not given/cAMP (Not given) [8.12]h Keitz et al. (2004)
Compound 22 Rat UMR-106 osteosarcoma cell/cAMP Iloprost 6.41 Nakae et al. (2005)
Compound 23 Rat UMR-106 osteosarcoma cell/cAMP Iloprost 6.32 Nakae et al. (2005)
Compound 24 Human Platelet membrane/cAMP Iloprost 7.8c Brescia et al. (2007)

TP receptor
AA-2414
(Seratrodast)

Human Bronchus U-46619 7.7 Itoh et al. (1993)
Pig Coronary artery U-44069 9.0 Imura et al. (1990)
Guinea pig Aorta U-46619 8.5 Zhang et al. (1996)

Trachea U-46619 7.69 Ashida et al. (1989)
Rat Aorta U-46619 7.8 Zhang et al. (1996)

AH-23848 Human Bronchus U-46619 8.5 Coleman and Sheldrick (1989)
Bronchus U-46619 6.9 McKenniff et al. (1988)
Hand vein U-46619 8.4 Arner et al. (1991)
Lung parenchyma U-46619 8.7 McKenniff et al. (1988)
Platelet/aggregation U-46619 8.05 Tymkewycz et al. (1991)

Guinea pig Lung parenchyma U-46619 8.7 McKenniff et al. (1988)
Trachea U-46619 8.7 McKenniff et al. (1988)
Trachea U-46619 9.76 Tymkewycz et al. (1991)
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Table 2 Continued

Antagonist Species Tissue system Agonist pA2 Reference

Rat Aorta U-46619 8.47 Tymkewycz et al. (1991)
Lung parenchyma U-46619 6.9 Norman et al. (1992)
Platelet/aggregation U-46619 8.19 Tymkewycz et al. (1991)

BAY-u3405
(Ramatroban)

Human Bronchus U-46619 8.8 McKenniff et al. (1991)
Pulmonary vein U-46619 8.94 Walch et al. (2001)

Guinea pig Lung parenchyma U-46619 7.7 Norman et al. (1992)
Trachea U-46619 8.7 McKenniff et al. (1991)

Rat Lung parenchyma U-46619 8.6 McKenniff et al. (1991)
BM-13177
(Sulotroban)

Human Platelet/aggregation U-46619 6.31 Karasawa et al. (1991a)
Guinea pig Aorta U-46619 5.58 Karasawa et al. (1991b)
Rabbit Jugular vein U-46619 6.01 Giles et al. (1989)

BM-13505 Human Hand vein U-46619 7.9 Arner et al. (1991)
Platelet/aggregation U-46619 7.75 Karasawa et al. (1991a)
Uterus (non-pregnant) U-46619 7.4 Senchyna and Crankshaw (1996)

Guinea pig Aorta U-46619 6.89 Dubé et al. (1992)
Aorta U-46619 7.22 Karasawa et al. (1991b)
Aorta U-46619 7.3 Zhang et al. (1996)
Lung parenchyma U-46619 7.0 Norman et al. (1992)
Trachea U-46619 7.73 Dubé et al. (1992)
Trachea U-46619 7.5 Ogletree and Allen (1992)

Rat Aorta U-46619 8.2 Zhang et al. (1996)
Aorta U-46619 8.6 Ogletree and Allen (1992)
Lung parenchyma U-46619 7.5 Norman et al. (1992)

BMS-180291
(Ifetroban)

Human Platelet membrane/binding [3H]-SQ-29548 8.4 Ogletree et al. (1993)
Guinea pig Aorta U-46619 9.8 Zhang et al. (1996)
Rat Aorta U-46619 9.5 Zhang et al. (1996)

CV-4151 Human Platelet/aggregation U-46619 5.2 Watts et al. (1991)
Rabbit Aorta U-44069 5.9 Imura et al. (1988)

EP-092 Human Bronchus U-46619 7.37 Featherstone et al. (1990)
Bronchus U-46619 6.8 McKenniff et al. (1988)
Lung parenchyma U-46619 8.9 McKenniff et al. (1988)
Platelet /aggregation U-46619 7.73 Tymkewycz et al. (1991)
Uterine artery U-46619 8.5 Baxter et al. (1995)

Guinea pig Lung parenchyma U-46619 8.7 McKenniff et al. (1988)
Trachea U-46619 7.29 Featherstone et al. (1990)
Trachea U-46619 8.7 McKenniff et al. (1988)
Trachea U-46619 8.02 Tymkewycz et al. (1991)

Rat Aorta U-46619 8.55 Tymkewycz et al. (1991)
Lung parenchyma U-46619 7.1 Norman et al. (1992)
Platelet aggregation U-46619 7.80 Tymkewycz et al. (1991)

EP-169 Human Platelet/aggregation U-46619 8.30 Tymkewycz et al. (1991)
Pulmonary artery U-46619 ~8.2 Qian et al. (1994)

Guinea pig Trachea U-46619 8.77 Tymkewycz et al. (1991)
Rat Aorta U-46619 8.73 Tymkewycz et al. (1991)

Platelet/aggregation U-46619 8.48 Tymkewycz et al. (1991)
Glibenclamide Human Internal mammary artery U-46619 6.3i Stanke et al. (1998)

Saphenous vein 6.7i Stanke et al. (1998)
Dog Coronary artery U-46619 6.2 Cocks et al. (1990)
Rabbit Aorta U-46619 6.08a Pfister et al. (2004)
Guinea pig Aorta U-46619 <5.0 Kemp and McPherson (1998)
Rat Aorta U-46619 6.13 Kemp and McPherson (1998)

GR-32191
(Vapiprost)

Human Bladder (detrusor) U-46619 8.27 Palea et al. (1998)
Bronchus U-46619 8.77 Featherstone et al. (1990)
Bronchus U-46619 8.40 Armour et al. (1989)
Platelet/binding [3H]-GR-32191 8.66 Armstrong et al. (1993)
Pulmonary artery U-46619 8.18 Lumley et al. (1989)
Saphenous vein U-46619 8.93 Furci et al. (1991)
Umbilical artery U-46619 8.0 Boersma et al. (1999)
Uterine artery U-46619 8.5 Baxter et al. (1995)
Uterus (non-pregnant) U-46619 8.6 Senchyna and Crankshaw (1996)
Uterus (pregnant) U-46619 8.5a Senior et al. (1993)

Guinea pig Aorta U-46619 8.77 Lumley et al. (1989)
Aorta U-46619 9.4 Ogletree and Allen (1992)
Trachea U-46619 8.26 Featherstone et al. (1990)
Trachea U-46619 9.43 Tymkewycz et al. (1991)
Trachea U-46619 10.0 Ogletree and Allen (1992)

Rat Aorta U-46619 7.87 Lumley et al. (1989)
Aorta U-46619 7.49 Furci et al. (1991)
Aorta U-46619 8.41 Tymkewycz et al. (1991)
Aorta U-46619 8.3 Ogletree and Allen (1992)
Trachea U-46619 8.31 Lydford and McKechnie (1994)

GR-83783j Rat Aorta U-46619 7.5 Campbell et al. (1991a)
GR-108774j Rat Aorta U-46619 9.2 Campbell et al. (1991b)
ICI-192605 Human Platelet/aggregation U-46619 8.16 Brewster et al. (1988)

Umbilical artery U-46619 8.1 Boersma et al. (1999)
Umbilical vein U-46619 9.07 Daray et al. (2003)
Uterus (non-pregnant) U-46619 9.2 Senchyna and Crankshaw (1996)

Rat Aorta U-46619 8.4 Brewster et al. (1988)
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Table 2 Continued

Antagonist Species Tissue system Agonist pA2 Reference

I-PTA-OH Guinea pig Lung parenchyma U-46619 5.6 Norman et al. (1992)
Rat Lung parenchyma U-46619 5.8 Norman et al. (1992)

I-SAP Human Platelet/aggregation U-46619 8.01k Naka et al. (1992)
KW-3635 Human Platelet/aggregation U-46619 8.88 Karasawa et al. (1991a)

Guinea pig Aorta U-46619 7.74 Karasawa et al. (1991b)
L-655240 Guinea pig Aorta U-44069 8.0 Hall et al. (1987)

Aorta U-44069 8.0 Hall et al. (1987)
ONO-11120 Human Platelet/binding [125I]-PTA-0H 7.71c Narumiya et al. (1986)

Platelet/aggregation U-46619 7.49 Tymkewycz et al. (1991)
Guinea pig Trachea U-46619 8.07 Tymkewycz et al. (1991)
Rat Aorta U-46619 7.14 Tymkewycz et al. (1991)

Platelet/aggregation U-46619 7.38 Tymkewycz et al. (1991)
ONO-NT-126 Human Astrocytoma cell/PI STA2 10.0 Nakahata et al. (1990)
Ridogrelj Human Platelet/aggregation U-46619 5.7 Watts et al. (1991)

Rat Tail artery U-46619 5.5 Janssens et al. (1990)
(�)-S-145
(Domitroban)l

Human Astrocytoma cell/PI STA2 8.48 Nakahata et al. (1990)
Platelet membrane/binding [3H]-(+)-S-145 9.35 Kishino et al. (1991)

Rat Aorta smooth muscle cell/binding [3H]-SQ-29548 9.5a Hanasaki et al. (1988)
S-18886
(Terutroban)

Rabbit Saphenous vein U-46619 8.9 Cimetière et al. (1998)

SQ-29548 Human Astrocytoma cell/PI STA2 8.08 Nakahata et al. (1990)
Immortalized ciliary epithelial cell/PI U-46619 7.7m Sharif et al. (2002)
Corpus cavernosum U-46619 9.0 Angulo et al. (2002)
Umbilical artery U-46619 7.6 Boersma et al. (1999)
Umbilical vein U-46619 7.96 Daray et al. (2003)
Uterus (non-pregnant) U-46619 8.2 Senchyna and Crankshaw (1996)

Pig Coronary artery U-46619 8.8a Kromer and Tippins (1996)
Rabbit Aorta U-46619 7.95 Yoshida et al. (2007)
Guinea pig Aorta U-46619 7.96 Dubé et al. (1992)

Aorta U-46619 8.9 Ogletree and Allen (1992)
Aorta U-46619 8.5 Zhang et al. (1996)
Lung parenchyma U-46619 7.7 Norman et al. (1992)
Trachea U-46619 8.70 Dubé et al. (1992)
Trachea U-46619 8.9 Ogletree and Allen (1992)

Rat Aorta U-46619 9.2 Zhang et al. (1996)
Lung parenchyma U-46619 7.2 Norman et al. (1992)

SQ-30741 Human Coronary artery U-46619 7.54 Maassen VanDenBrink et al., 1996)
Human Umbilical artery U-46619 7.0 Boersma et al. (1999)
Guinea pig Aorta U-46619 8.1 Ogletree and Allen (1992)

Trachea U-46619 8.6 Ogletree and Allen (1992)
Rat Aorta U-46619 7.9 Ogletree and Allen (1992)

YM-158 Guinea pig Trachea U-46619 8.81n Arakida et al. (1998)
Z-335 Human Platelet membrane/binding [3H]-SQ-29548 7.52 Tanaka et al. (1998)

Platelet/shape changeo U-46619 8.02 Yoshida et al. (2007)
Rabbit Aorta U-46619 8.64 Yoshida et al. (2007)

ZD-1542j Guinea pig Lung parenchyma U-46619 8.5 Brownlie et al. (1993)
Trachea U-46619 8.3 Brownlie et al. (1993)

Rat Aorta U-46619 8.51 Brownlie et al. (1993)

pA2 values relate to functional assays. Recombinant (rc-) systems: prostanoid receptor followed by the carrier cell line and second messenger measurement. Smooth
muscle preparations: contraction or relaxation of induced tone. Platelets: all data from plasma-free platelet suspensions. Where pA2 values are not available, pKi/pKD

values derived from radioligand binding are given (italics). Affinity values in square brackets derive from the patent literature.
Structures of compounds: 1–5, Figure 1; 6–12, Figure 2; 13–15, Figure 3; 16–19, Figure 4; 20, Figure 5; 21–24, Figure 7.
BEAS, human bronchial epithelium; CHO, Chinese hamster ovary; COS-7, African green monkey kidney; HEK, human embryonic kidney; CRE, cAMP response
element; 16,16-DM PGE2, 16,16-dimethyl PGE2; PI, phosphoinositide.
aOur calculation.
bAppreciable affinity for corresponding TP receptor.
cpIC50.
dInsurmountable antagonism in functional DP2 systems.
e1 mM SC-51322 present.
fReplacement for sulprostone, which had slow onset and offset.
gPossible interference by EP2 system.
hpKi.
ipKb for non-competitive antagonism.
jCombined TP antagonist/TXS inhibitor.
kShape change seen.
lData for (+)- and (-)-enantiomers in Kishino et al. (1991).
mNon-competitive antagonism.
npA2 = 8.87 for LTD4 antagonism.
oSuppression of maximum aggregation response.
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several structural classes. The most important of these
(Figure 1) and their therapeutic applications are described
below.

Bicycloheptanes. Chemists in Shionogi have synthesized
selective DP1 antagonists containing a bicyclo[2.2.1]heptane
ring system akin to that present in PGH2 (see inset in Figure 8)
(Tsuri et al., 1997; Honma et al., 1998; Mitsumori et al.,
2003a). An initial lead was the racemic compound 1 previ-
ously shown to be a TP antagonist (Narisada et al., 1988).
Subsequent structure–activity relationship (SAR) studies
revealed that a 6,6-dimethylbicyclo[3.1.1]heptane (pinane)
system could substitute for the bicycloheptane ring (Tsuri
et al., 1997; Mitsumori et al., 2003b; Yoshikawa et al., 2005)
and carbonylamino or sulphonylamino linkages to the w-aryl
moiety were required for potent DP1 antagonism (Tsuri et al.,
1997; Honma et al., 1998; Mitsumori et al., 2003b). Accord-
ingly, S-5751 has high affinity for the DP1 receptor (pKi = 8.8)
and is orally active in models of allergy and inflammation in
the guinea pig (Tsuri et al., 1997; Arimura et al., 2001; Mit-
sumori et al., 2003b; Yasui et al., 2008). In addition, lead opti-
mization of the (+)-isomer of compound 1, which has much
higher DP1 selectivity than its mirror-image, led to the
1-methoxy-dibenzo[b,d]furan 2. This antagonist is potent,
orally bioavailable and efficacious in guinea pig models of
conjunctivitis and allergen-induced bronchoconstriction
(Mitsumori et al., 2003a).

Allergan have also filed patents claiming DP1 receptor
antagonism based on a 1(S),4(S)-7-oxabicyclo[2.2.1]heptane
scaffold (Krauss et al., 2005). One of these, compound 3, has
a pA2 of ~7.4 for the human rc-DP1 receptor and represents a
logical structure for lead optimization.

Indole acetic acids. A non-prostanoid exploited for DP1

antagonism at Ono Pharmaceuticals is the cyclo-oxygenase
(COX) inhibitor/non-steroidal anti-inflammatory drug
(NSAID), indomethacin (Figure 1). Initial studies showed that
the acetic acid moiety could be switched to position 4 on
the indole ring (Torisu et al., 2004a). Optimization led to the
discovery of two benzoxazines, ONO-AE3-237 and compound
4, with high DP1 antagonist selectivity and (sub)nanomolar
affinity (Torisu et al., 2004b,c,d; Torisu et al., 2005). Adminis-
tered orally, both compounds effectively suppressed PGD2- and
allergen-induced vascular permeability in the guinea pig con-
junctiva (Torisu et al., 2004c). Pharmacokinetic studies on
ONO-AE3-237 given by the oral (10 mg·kg-1) and intravenous
(1 mg·kg-1) routes to fasted rats afforded plasma half-lives of
7.8 and 9.2 h respectively. The compound has a high volume of
distribution indicating good tissue penetration and is 48%
bioavailable at a dose of 10 mg·kg-1 p.o. (Torisu et al., 2004c).

Merck Frosst (Wang et al., 2002; Berthelette et al., 2003)
and Sanofi-Aventis (Yang et al., 2008) also filed patents
claiming DP1 antagonists with further variation of the acetic
acid position on the indole template. Screening of the Merck

Figure 1 DP1 receptor antagonists. The natural ligand PGD2 is shown in the box; the trans-orientation of the a (upper) and w (lower)
side-chains and (S) configuration at C15 are found in primary products of all COX/synthase systems. BW-A868C and ZK-138357 are each
composed of four diastereoisomers (chiral centres at C8/C15 and C10/C15 respectively); compound 1 is racemic. Indomethacin is a lead
compound for the non-prostanoid antagonists shown in the lower row; N-benzoyl-2-methyl-indol-3-yl-acetic acid templates are shown in red.
The 3(S)-enantiomer of MK-0524 has 320-fold lower affinity for the human DP1 receptor (Sturino et al., 2007).
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compound collection identified a difluoro-indole that had
low-nanomolar affinity for DP1 and TP receptors (Sturino
et al., 2006) and this, and other analogues, were optimized
resulting in two 7-methylsulphone derivatives with high
DP1 affinity (Ki ~2 nM) and at least 100-fold selectivity over
other prostanoid receptors. However, both compounds dis-
played poor pharmacokinetics in the rat, in particular exten-
sive biliary excretion (Sturino et al., 2007). This liability was
overcome when the 5-substituent and the 7-methylsulphone
on the indole ring were replaced by methylsulphone and
fluorine, respectively, to give MK-0542 (laropiprant;
Figure 1). Laropiprant has very high affinity for the human
rc-DP1 receptor (pKi = 10.5), with ~300-fold lower affinity for
the corresponding TP receptor (Sturino et al., 2007). Excel-
lent pharmacokinetic profiles have been found in the rat,
dog, monkey and man (Chang et al., 2007; Karanam et al.,
2007; Sturino et al., 2007; Lai et al., 2008b). Given orally to
healthy male volunteers, laropiprant at single doses up to
900 mg and multiple doses up to 450 mg is rapidly absorbed
(Tmax = 0.8–2 h), demonstrates dose-proportional systemic
exposure, has a half-life of 12–18 h and is generally well
tolerated; this pharmacokinetic profile is unaffected by food
(Karanam et al., 2007; Lai et al., 2008b). At a dose of 6 mg,
laropiprant was effective in antagonizing PGD2-induced
cAMP accumulation in human platelets ex vivo, indicating
an interaction with the desired molecular target. Evidence
for TP receptor blockade was also detected, but this effect
was deemed not to be clinically relevant (Lai et al., 2008b).

Merck Frosst has also disclosed ‘backup’ DP1 antagonists, in
which the indole template present in laropiprant is inverted.
The tetrahydropyridoindole 5 (Figure 1) exhibited the best
profile (pKi = 9.0 and 6.8 at DP1 and TP receptors respectively)
and is considered a suitable candidate for development
(Beaulieu et al., 2008).

Other structural classes. Certain aminopyrimidines have also
been claimed in the patent literature to be DP1 antagonists but
neither in vitro nor in vivo pharmacological data are yet avail-
able (Langevin et al., 2007; Stefany et al., 2007).

Therapeutic applications
PGD2 is an established mediator of allergic disease. It is the
major prostanoid released from mast cells (Lewis et al., 1982;
Peters et al., 1982) and is also secreted, albeit in lower amounts,
by T-lymphocytes of the Th2 subset (Tanaka et al., 2000). In
asthma, dermatitis and rhinitis, allergen challenge leads to the
rapid production of PGD2 (Naclerio et al., 1983; Murray et al.,
1986; Charlesworth et al., 1991) and PGD2, itself, can repro-
duce many symptoms associated with allergic phenomena (see
Pettipher, 2008). However, therapeutic/commercial success
has not yet been attained with DP1 antagonists probably
because functional and subsequently molecular evidence
emerged for a second subtype of PGD2-sensitive receptor that is
strongly implicated in several manifestations of allergic disease
including eosinophil infiltration, mucus hyper-secretion and
plasma extravasation (see next section).

In terms of allergic inflammation, activation of DP1 recep-
tors is known to mediate pathological changes in blood flow.
In allergic rhinitis, vessels within the nasal mucosa become

engorged leading to congestion and the release of plasma
proteins, which contribute to enhanced nasal secretions.
These effects are mimicked by PGD2, which explains the
limited efficacy of histamine H1 antagonists in allergic rhinitis
(see Pettipher, 2008). Sturino et al. (2007) have shown that
laropiprant abolishes the marked increase in nasal airway
resistance induced by intranasal instillation of PGD2 in con-
scious sheep. Significantly, comparable data have also been
obtained in 15 healthy, non-smoking male volunteers in
whom laropiprant (25 mg or 100 mg q.d. for 3 days) signifi-
cantly suppressed PGD2-induced nasal congestion (Van
Hecken et al., 2007). Interestingly, PGD2 fails to lower dias-
tolic blood pressure (BP) in human volunteers (Heavey et al.,
1984) although (BW)-192C86, a DP1 partial agonist (Gray
et al., 1992), is an effective depressor and BW-245C evokes
adverse cardiovascular effects consistent with vasodilatation
(Al Sinawi et al., 1985). The reason for this discrepancy is
unknown, but given that PGD2 is a potent vasoconstrictor in
several species (Jones, 1976; 1978) and the DP2 receptor is
expressed in the aorta (Nagata and Hirai, 2003) and poten-
tially other blood vessels, its activation may oppose the
BP-lowering activity of PGD2 acting via the DP1 receptor.

The ability of PGD2 to promote adverse vasodilatation is
also associated with the therapeutic use of niacin (vitamin
B3), which, in high doses, is used clinically to lower plasma
cholesterol. Niacin may also have anti-oxidant and anti-
inflammatory activity and is used, in conjunction with
statins, to treat dyslipidaemia (see Kamanna et al., 2008). The
adverse effects of niacin, particularly flushing, are due to
receptor (GPR109A)-mediated release from Langherhans’ cells
of PGD2 and PGE2, which promote vasodilatation of dermal
and cerebrovascular capillaries though activation of DP1, EP2

and EP4 receptors. Merck (Paolini et al., 2008) and Sanofi-
Aventis (Harris, 2008) have claimed that a DP1 antagonist
could limit the cardiovascular liability of niacin if given as a
combination therapy, thereby providing a better-tolerated
drug. Indeed, laropiprant significantly reduced niacin-
induced flushing in normal and dyslipidaemic subjects when
compared with niacin alone (Cheng et al., 2006; Lai et al.,
2007; Paolini et al., 2008). Accordingly, these and other find-
ings led Merck to develop the investigational combination
product Cordaptive, which significantly reduced the vascular
side effects of niacin in patients with primary hypercholes-
terolaemia and mixed dyslipidaemia (see Kamanna et al.,
2008). However, in April 2008 the US Food and Drug admin-
istration did not approve Merck’s application to market
Cordaptive (see http://www.merck.com/newsroom/press_
releases/research_and_development/2008_0428.html), and at
the same time, rejected the name of the combination therapy.
The US Food and Drug administration’s decision not to
approve Cordaptive, now renamed Tredaptive, is unclear given
that the European Medicines Agency has approved this new
extended-release combination therapy (see http://www.
emea.europa.eu/humandocs/Humans/EPAR/tredaptive/treda
ptive.htm). One possibility is that the beneficial effects of
laropiprant are not superior to aspirin (Kamanna et al., 2008)
and the risk/benefit ratio is a primary consideration when the
long-term effects of a new drug class are unknown.

DP1 antagonists may also have utility in the treatment of
allergic asthma, although, currently, this is controversial (see
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Pettipher, 2008). Persuasive evidence is available that acti-
vated mast cells, through their ability to generate PGD2,
promote T-lymphocyte polarization towards a Th2 phenotype
(Faith et al., 2005; Hammad and Lambrecht, 2008). Mecha-
nistically, it is believed that mast cell-derived PGD2 activates
DP1 receptors on dendritic cells within the respiratory
mucosa. This interaction then suppresses the generation of
interleukin (IL)-12 (which normally favours a Th1 cell bias)
leading to Th2 dominance (Kitawaki et al., 2006; Theiner
et al., 2006). A cycle of chronic immunological activation
then ensues through further production of IgE and mast cell
activation. Indeed, these data are consistent with allergic
airway responses being less intense in DP1 receptor-deficient
mice when compared with wild-type animals (Matsuoka et al.,
2000). However, the role of DP1 receptors in regulating allergic
reactions is complex. For example, the administration to wild-
type mice of the DP1 agonist, BW-245C, paradoxically reduced
pulmonary allergic responses whereas DP1 receptor null mice
were unaffected (Hammad et al., 2007). To explain this appar-
ently contradictory result it has been proposed that DP1

receptor-mediated inhibition of IL-12 release from dendritic
cells during host sensitization promotes Th2 polarization (i.e.
is pro-inflammatory). In contrast, during maintained airway
inflammation, PGD2 by suppressing dendritic cell function
reduces Th2 cell function (i.e. is anti-inflammatory). Indeed,
the DP1 antagonist, S-5751, attenuated rather than exacerbated

allergen-induced inflammation in sensitized guinea pigs
(Arimura et al., 2001). Thus, the harmful/protective actions of
PGD2 may depend on when and where it is produced
(Pettipher, 2008).

DP2 receptor antagonists

Development
Studies conducted in the 1970s showed that PGD2 elicited
peripheral vasoconstrictor responses that were unlikely to be
due to activation of, what we now understand to be, DP1, FP
or TP receptors (Jones, 1976; 1978). In particular, 15-oxo PGD
analogues (Jones and Wilson, 1978) had unexpectedly high
agonist potency. Moreover, evidence for DP receptor hetero-
geneity was provided in 1985 by the finding that PGD2 and
six related analogues evoked functional responses across a
variety of PGD2-sensitive systems that were not mimicked by
the selective DP agonist, BW-245C (Narumiya and Toda,
1985). The results of several other studies also indicated the
existence of multiple DP receptors (Woodward et al., 1990a;
1993b; Rangachari and Betti, 1993; Fernandes and Crank-
shaw, 1995; Rangachari et al., 1995). However, it was not until
1999 that the idea of multiple DP-receptors really began to
gain general acceptance. Nagata et al. (1999b) identified a
novel molecule expressed on the surface of minor populations

Figure 2 DP2 receptor antagonists. Inverted 2-methyl-indole-acetic acid residues (compare with 6) are highlighted in red; ramatroban has an
extra methylene (C2a). The phenylacetic acid moiety is shown in blue in fenclofenac, a lead molecule for compound 11. Compound 12, K-117
and K-604 contain a tetrahydroquinoline residue (green).
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of CD4+ T-lymphocytes, which resembled activated Th2 cells
in that they released IL-4, IL-5 and/or IL-13 but not
interferon-g on stimulation. This orphan site was named
‘chemoattractant receptor-homologous molecule expressed
on Th2 cells’, or CRTh2, as primary sequence analysis showed
significant amino acid homology to receptors that mediate
chemoattraction (Hirai et al., 2001). Indeed, despite the
ability of PGD2 to interact with the DP1 subtype and CRTh2
with comparably high affinity (Ki = 45 and 61 nM respec-
tively), the two cognate receptors are quite dissimilar at the
amino acid level (Hirai et al., 2001). A follow-up study by the
same investigators discovered a mast cell-derived factor that
could increase the cytosolic free Ca2+ concentration in CRTh2-
expressing cells (Nagata et al., 1999a), which was identified as
PGD2 (Hirai et al., 2001). This latter finding coincided with
the publication of a pharmacological study in which
Monneret et al. (2001) found that PGD2 was chemotactic for
eosinophils and also up-regulated the expression of CD11b
and L-selectin by a mechanism that was neither mimicked by
BW-245C nor blocked by the DP1 antagonist, BW-A868C.
Thus, a second DP receptor subtype (DP2, aka CD294) was
identified on Th2 cells and eosinophils that mediated
responses diametrically opposite to the inhibitory effects clas-
sically associated with DP1 agonism. Given that CRTh2 is now
known to be ubiquitously expressed within (Nagata et al.,
1999a) and outwith (Hirai et al., 2001; Nagata and Hirai, 2003;
Kostenis and Ulven, 2006; Kim and Luster, 2007) the immune
system (Sawyer et al., 2002; Nagata and Hirai, 2003), the term
‘DP2’ is a more appropriate designation and is used through-
out this review.

The ability of PGD2 to act as a chemoattractant for pro-
inflammatory cells and to release Th2-like cytokines has
resulted in a concerted effort by the pharmaceutical industry
to synthesize selective DP2 antagonists. Indeed, such com-
pounds may be useful in suppressing a myriad of Th2-driven
inflammatory pathologies including asthma, otitis, contact
dermatitis and rhinitis. At the time of writing, in excess of 90
patents had been filed claiming selective DP2 antagonists. In
the sections below the main structural classes are described
and affinity estimates of lead antagonists (Figure 2) are given
in Table 2.

Indole acetic acids. In addition to providing a scaffold for
the development of DP1 antagonists, indomethacin
(Figure 1) is also a selective, albeit weak, DP2 agonist (Hirai
et al., 2002; Stubbs et al., 2002). Exploiting this property,
Pfizer first reported a benzothiazole derivative 6 that had a
pA2 of 6.8 and was ~40-fold selective for the DP2 receptor
(Bauer et al., 2002). Subsequently, several patents describing
highly potent and selective DP2 antagonists were filed by
AstraZeneca (Baxter et al., 2003a,b; Birkinshaw et al., 2003;
Bonnert et al., 2003; 2004; 2005a,b,c; Bonnert and Rasul,
2004). An initial hit was a 7-chloroquinoline derivative of
indomethacin (pA2 ~7 for human rc-DP2 receptor), which
also inhibited COX-1 with high potency (Birkinshaw et al.,
2006). Inversion of the indole template (Figure 2) and sub-
stitution of the 5-methoxy moiety by methyl increased
antagonist potency by 23-fold and reduced COX-1 inhibi-
tion by a factor of 10 (Birkinshaw et al., 2006). Addition of
chlorine at position 8 of the quinoline to give 7 also

increased DP2 affinity by 13-fold (IC50 for inhibition of
[3H]-PGD2 binding = 2.3 nM). This derivative has a preferred
biological profile with relatively weak binding to plasma
proteins and good bioavailability in rats (76%) and dogs
(100%), with half-lives of 1.7 and 5.3 h respectively (Birkin-
shaw et al., 2006). Compounds having an arylthio substitu-
ent on position 3 of the indole nucleus also display very
potent antagonism at the DP2 receptor; compound 8 has a
binding IC50 of 0.4 nM (Bonnert and Rasul, 2004).

Related 1-acetic acid derivatives from Oxagen containing
methylene or sulphonyl spacers between the aromatic moi-
eties have been reported as potent DP2 antagonists (Middle-
miss et al., 2005a,b,c,d; Armer et al., 2006; Lovell, 2007),
including compound 9, which has a Ki of 68 nM and a DP2/
DP1-selectivity ratio of approximately 150. Functionally, 9
potently inhibits DP2 receptor-mediated human eosinophil
shape change and Th2 cell chemotaxis with IC50 values of
74 and 67 nM respectively (Armer et al., 2005). Moreover,
this compound is metabolically stable, has no inhibitory
effect on five of the major cytochrome P450 enzymes (1A2,
2C19, 2C9, 2D6, 3A4) and fails to induce CYP3A4, CYP1A
and CYP2C9. In rats, 9 is 56% bioavailable and has a half-
life of 5.5 h following oral administration. Oxagen has
reported the development of a lead compound, ODC9101
(aka OC459), which is in Phase IIa clinical trials for asthma.
According to the company’s website, ODC9101 has com-
pleted safety evaluations, is orally active and suitable for
once-a-day dosing. Oxagen has also reported the develop-
ment of a pre-clinical back-up molecule, OC499, and
DP2 antagonists for non-oral delivery (OC1768) and
topical administration (OC2125, OC2184; see http://www.
oxagen.co.uk/pdfs/CRTH2summary.pdf). The structures of
these compounds have not been disclosed.

Athersys has also described a series of indole acetic acid
derivatives with potent DP2 antagonist activity (Bennani
et al., 2006) including substituted 3-benzylphthalazin-1(2H)-
ones which have radioligand binding IC50 values in the low
nanomolar range; their development status is unknown.

Ramatroban and analogues. Ramatroban (Bay u3405) was
originally described as a TP antagonist with a pA2 of ~8.8 on
human tissues (McKenniff et al., 1991). Later studies revealed
DP2 antagonism (Sugimoto et al., 2003), albeit of lower
affinity (pA2 = 7.44; Mathiesen et al., 2006). The structural
similarity of ramatroban to compounds 7–9 is clear. These
observations were the impetus for the synthesis of com-
pounds with increased selectivity for the DP2 receptor
(Arimura et al., 2003). An example is 10, in which the amide
nitrogen atom is included in the tricyclic system. This com-
pound has high affinity for the DP2 receptor (pA2 = 8.53) with
significantly reduced TP receptor-blocking activity (Fretz
et al., 2005).

Other minor changes to ramatroban also resulted in com-
pounds with a high degree of DP2 selectivity. 7TM Pharma
reported that N-methylating the sulphonamide or truncating
the propionate moiety to acetate produces very selective
(>1000-fold over DP1 and TP), high-affinity DP2 antagonists
with Ki values of 1.9 (TM-30642) and 0.51 nM (TM-30643)
respectively (Ulven and Kostenis, 2005). Furthermore, making
both modifications to produce TM-30089 (aka CAY-10471)
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preserved the DP2 affinity of TM-30643 and further increased
the DP2/TP-selectivity ratio to >10 000 (Ulven and Kostenis,
2005). Interestingly, in functional studies (e.g. [35S]-GTPgS
binding/inositol phosphate accumulation; PGD2-induced
eosinophil shape change), ramatroban and TM-30642 are sur-
mountable competitive antagonists whereas TM 30643 and
TM 30089 suppress the maximal response in a concentration-
dependent manner (Mathiesen et al., 2006). The insurmount-
able behaviour of TM-30089 and TM-30643 may be due to its
slow dissociation from the DP2 receptor, which also results in
long-lasting antagonism (Mathiesen et al., 2006). Whether
such pharmacological behaviour occurs in vivo and would be
therapeutically advantageous is currently unclear. However,
this could be a desirable property as slowly dissociating drugs
should act much longer than would be predicted from their
plasma half-lives (Mathiesen et al., 2006). 7TM Pharma, in
partnership with Ortho-McNeil-Janssen Pharmaceuticals, has
a compound in late-stage lead optimization although neither
the structure nor the profile of the antagonist has been
disclosed (see http://www.7tm.com/News.aspx?M=News&PID
=42&NewsID=39).

Phenyl acetic acids. Another NSAID, fenclofenac (Figure 2),
provided the starting point for the synthesis of DP2 antago-
nists based on a phenylacetic acid template. An initial hit
claimed in the original patent filed by Pfizer (Bauer et al.,
2002) had a 4-chlorophenylthio substituent resulting in a
functional DP2/DP1-selectivity ratio of 40. Several other com-
panies, including AstraZeneca, have since filed patents for
bis-ether derivatives such as 11, which has a binding pIC50 of
9.0 (Bonnert et al., 2005c).

Tetrahydroquinolines. Millennium and Warner-Lambert (now
Pfizer) were the first to disclose DP2 antagonists within the
tetrahydroquinoline class (Awad et al., 2004; Ghosh et al.,
2004; 2005; Kuhn et al., 2004). These compounds are unique
in that they are non-acidic indicating that a carboxylic acid
moiety is not essential for DP2 antagonism, as previously
assumed (see Pettipher et al., 2007). The 4-amino-
tetrahydroquinoline 12 (Figure 2) is reported to gain access to
the cerebrospinal fluid after oral dosing and also is efficacious
in animal models of inflammation at an oral dose of
25 mg·kg-1 (Corradini et al., 2005). However, at the time of
writing detailed pharmacological data on non-acidic DP2

antagonists is sparse. Researchers at Kyowa Hakko Kogyo have
reported Ki values of 5.5 and 11 nM for K-117 and K-604
respectively, with minimal interaction with TP or DP1 recep-
tors at concentrations up to 1 mM (Mimura et al., 2005).

Therapeutic applications
Arguably, allergic inflammation is the primary indication for
antagonists that selectively block the DP2 receptor. Indeed,
the gene encoding this receptor shows a particularly strong
association with asthma in Chinese and African-American
populations (Huang et al., 2004). Moreover, there is good
evidence from in vitro and in vivo studies in laboratory animals
that PGD2, acting via the DP2 receptor, can mediate many of
the cardinal features of allergic airways inflammation (see
Ulven and Kostenis, 2006; Pettipher, 2008 for detailed

reviews). The most important observations that have led to
this view can be summarized as follows:

1. PGD2 and selective DP2 agonists promote chemotaxis of
eosinophils, basophils and CD4+ T-lymphocytes of the Th2
subset and this effect is abolished by a neutralizing anti-
DP2 receptor antibody (Hirai et al., 2001; Monneret et al.,
2001).

2. PGD2 promotes pulmonary eosinophilia in rats; this effect
is mimicked by selective DP2, but not DP1, agonists and is
abolished by ramatroban (Almishri et al., 2005; Shiraishi
et al., 2005).

3. In guinea pigs, the DP2 agonist, D12-PGJ2, mobilizes eosino-
phils from the bone marrow (Heinemann et al., 2003).

4. The DP2 agonist, 13,14-dihydro-15-oxo PGD2, promotes
pulmonary eosinophilia and exacerbates histopathology in
a murine model of allergic asthma (Spik et al., 2005).

5. Ramatroban and DP2 antagonists devoid of TP receptor-
blocking activity reduce pulmonary eosinophilia in several
animal species in response to allergen challenge (Nagai
et al., 1995; Uller et al., 2007; Pettipher, 2008).

6. PGD2 promotes the production of Th2 cytokines in vivo
including IL-4, IL-5 and IL-13 (Fujitani et al., 2002) and in
vitro, this can occur in the absence of allergen or
co-stimulatory molecules (Xue et al., 2005).

7. The expression of the DP2 receptor on eosinophils is
up-regulated in atopic individuals (see Kostenis and Ulven,
2006).

8. High concentrations of PGD2 are present in the airways of
asthmatic subjects after antigen challenge (Murray et al.,
1986).

9. The expression of the DP2 receptor on Th2 T-lymphocytes
is up-regulated in individuals sensitized to pollen or house
dust mite or who have atopic dermatitis (Iwasaki et al.,
2002).

The proof of this line of argument is the marketing of
ramatroban in Japan under the trade name Baynas for the
treatment of perennial allergic rhinitis; its clinical efficacy (e.g.
reduction of symptoms and of chronic nasal swelling) has been
attributed to DP2 receptor blockade (Terada et al., 1998).

In addition to anti-allergic indications, DP2 antagonists
may have utility in combating neuropathic pain (Corradini
et al., 2005) where the up-regulation of COX-2 and the sub-
sequent formation of PGs are central to disease pathophysi-
ology (Camu et al., 2003).

Hybrid DP1/DP2 receptor antagonists

In considering the SAR data described in the preceding sec-
tions, indole acetic acids may be a fruitful starting point for
antagonists that block both DP1 and DP2 receptors. Indeed, in
the context of allergic diseases, a hybrid antagonist may exert
clinically relevant, beneficial effects that are not achieved
when just one DP receptor is targeted. Thus, blockade of the
DP1 subtype would prevent PGD2 from inhibiting the genera-
tion of IL-12 from dendritic cells, thereby inhibiting the
polarization of T-lymphocytes to a Th2 phenotype that occurs
during host sensitization. Antagonism of the DP2 receptor
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would, at the same time, suppress the chemotactic activity of
PGD2 towards eosinophils, basophils and T-lymphocytes and
so reduce pulmonary leukocyte burden and inflammatory
status. Theoretically, this latter action would overcome any
DP1 receptor-mediated anti-inflammatory effect of PGD2 on
dendritic cells during maintained inflammation (Pettipher,
2008). It is also tempting to speculate that a non-selective DP
antagonist that also has TP receptor-blocking activity could be
efficacious in allergic asthma. In this scenario, TP receptor
blockade would reduce the ability of PGD2 to induce bron-
choconstriction, which in humans is mediated through the
TP receptor (Beasley et al., 1989). Again, indole acetic acids
and ramatroban analogues may provide good templates for
optimization.

EP1 receptor antagonists

Development
Figure 3 shows the commonly used EP1 antagonists; while
some may be considered as prostanoids, none is structurally
close to PGE2. The first EP1 antagonist was SC-19220, a diben-

zoxazepine hydrazide (Sanner, 1969). Although of low affinity
(pA2 = 5.5), SC-19220 proved useful in the early characteriza-
tion and elucidation of the roles of EP receptors. For example,
on guinea pig trachea, 3–50 mM SC-19220 (and indometha-
cin) suppressed inherent tone, indicating that PGE2 acting via
EP1 receptors is the likely mediator (Farmer et al., 1974). Also,
SC-19220 at 10 mM equally inhibited matching contractions
of guinea pig trachea induced by 16,16-dimethyl PGE2, ilo-
prost and isocarbacyclin, but had no effect on contractions
induced by U-46619 or histamine; these results demonstrated
that certain PGI2 analogues could potently activate EP1 recep-
tors (Dong et al., 1986).

SC-19220 (7.5–30 mg·kg-1 i.p.) inhibited carrageenan-
induced inflammation in the rat without suppressing PGE2

levels at the injury site (Barbieri et al., 1977). These and other
observations were the stimulus for the synthesis of higher-
affinity EP1 antagonists with potential as anti-inflammatory/
analgesic drugs in man; alteration of the acetyl group was the
most rewarding strategy. SC-51089 was unusual in the series in
releasing hydrazine and was dropped from development (Hal-
linan et al., 1993). The thioether SC-51322, which is much
more potent than the corresponding sulphone (Hallinan et al.,

Figure 3 EP1 receptor antagonists. The natural ligand PGE2 is shown in the box. The dibenzoxazepine residue in SC-51322 is shown in blue.
Aryl-sulphonamido residues in antagonists with prostanoid and non-prostanoid structures are shown in cerise; ONO-NT-012 contains a
styryl-sulphonamido moiety. The 1,2-biaryl-cyclopentene pharmacophores in GW-848687 and MF-266-1 are shown in red. Ring A in
GW-848687 is part of a picolinic acid (pyridine-2-carboxylic acid) residue.

Prostanoid receptor antagonists
116 RL Jones et al

British Journal of Pharmacology (2009) 158 104–145



1994), has become the agent of choice for receptor character-
ization. It behaved competitively over the range 25–625 nM in
a human rc-EP1 receptor – reporter gene assay (pA2 = 8.8; Schild
plot slope = 0.91; Durocher et al. (2000). In rat hepatocytes,
SC-51322 at 100 nM abolished DNA synthesis induced by PGE2

or 17-phenyl PGE2 (Table 1), while 1 mM SC-51322 did not
affect responses to either PGF2a or PGI2; the selective involve-
ment of EP1 receptors in the PGE response is clear (Kimura
et al., 2000; 2001). However, not all inferences about EP1 recep-
tor involvement are as secure. In a study on rat progenitor
Leydig cells, 3 and 30 mM SC-51322 suppressed IL-1b expres-
sion induced by 10 mM 17-phenyl PGE2 by 28% and 59%
respectively (Walch et al., 2003). Given that this system
responded well to 100 nM cloprostenol, a potent FP agonist
(Table 1), the action of 17-phenyl PGE2 and its inhibition by
SC-51322 may also have involved FP receptors. SC-51322 at
10 mM did not inhibit PGE2-mediated inhibition of superoxide
generation in human blood neutrophils (EP2 system) (Kan-
amori et al., 1997) or inhibit sulprostone-induced contraction
of rat femoral artery (EP3 system) at 1 mM (Hung et al., 2006).

Another widely used EP1 antagonist is AH-6809. At 0.1–
10 mM, it blocked EP1-mediated actions of PGE2, 16,16-
dimethyl PGE2 or 17-phenyl PGE2 in an apparently
competitive manner (pA2 = 7.4) (Coleman et al., 1987; Eglen
and Whiting, 1988; Lawrence et al., 1992). It did not block EP3

receptor-mediated contraction of guinea pig ileum (Lawrence
et al., 1992) and human pulmonary artery (Qian et al., 1994)
at 2 and 5 mM respectively and had no effect on the pre-
synaptic EP3 action of sulprostone on rat trachea at 3 mM
(Racké et al., 1992). However, AH-6809 blocks EP2 receptors
(see later) as well as DP1 and TP receptors in human-washed
platelets (Keery and Lumley, 1988) with pA2 values of ~6.3
and ~5.9 respectively (our calculation). Of further concern is
the inhibitory effect of AH-6809 (3–10 mM) on platelet-
activating factor (PAF)- and ADP-induced aggregation, which
was attributed to inhibition of phosphodiesterase(s) (Keery
and Lumley, 1988). In our hands, AH-6809 at 3–10 mM caused
similar partial block of the contractile actions of phenyleph-
rine (a1), histamine (H1), U-46619 (TP) and ONO-AE-248 (EP3)
on guinea pig aorta (R.L. Jones et al., 2009, submitted).
AH-6809 has often been used at even higher concentrations,
possibly because of its high water solubility. For example,
30–300 mM AH-6809 inhibited the contractile action of PGE2

in pig large cerebral artery; EP1 receptor involvement was
inferred (Jadhav et al., 2004). However, the pA2 corresponding
to 30 mM AH-6809 is only 5.2 (our calculation) and the block
was insurmountable at the higher concentrations. With more
potent and selective EP1 antagonists now available, it is time
to relegate AH-6809 to its place in the historical development
of prostanoid antagonists.

The EP1 antagonists developed by Ono Pharmaceuticals
(Figure 3, middle row) demonstrate an interesting progression
from the TP antagonist ONO-11120 (see Figure 8; Katsura et al.,
1983) to a related pinane analogue (ONO-NT-012) showing
EP1, FP and TP antagonism (and EP3 agonism), to a
bicyclo[2.2.2]octane analogue (ONO-8711) showing EP1/EP3

antagonism, and, finally, to the non-prostanoids ONO-8713
and compound 13 with high selectivity for the EP1 receptor.
ONO-8711, ONO-8713 and 13 have KD values for mouse rc-EP1

receptors of 1.7, 0.3 and 0.14 nM respectively (Watanabe et al.,

1999; 2000; Naganawa et al., 2006). Small modifications to 13
can restore EP3 antagonist affinity. In rat-cultured mesangial
cells, ONO-8713 at 1 mM abolished induction of the transform-
ing growth factor-b-fibronectin cascade elicited by PGE2 under
high-glucose conditions; a COX-2-PGE2-EP1 receptor drive was
postulated to contribute to deleterious changes in diabetes
(Makino et al., 2002). Ohnishi et al. (2001) showed that 10 mM
ONO-8713 partially inhibited PGE2-induced exocytosis in
mucous cells from guinea pig antrum (IC50 ~1 mM). However,
17-phenyl PGE2 was a very weak agonist. The authors postu-
lated that EP1 and EP4 receptors co-operate to sustain the high
exocytotic response to PGE2. Norel et al. (2004) also showed
that 10 mM ONO-8713 partially suppressed the contractile
action of sulprostone on human pulmonary vein; functional
EP1 receptors were postulated, even though the selective EP1

agonist ONO-DI-004 was a very weak agonist. Prostanoid
receptor binding data alone do not guarantee functional selec-
tivity at these high antagonist concentrations; inclusion of
control agonists (both prostanoid and non-prostanoid) in the
system under test is essential.

Other pharmacophores for potent EP1 antagonism, with
inactivity against cytochrome P450 enzymes and good pen-
etration into the central nervous system being secondary goals
(see later), have emerged within the last 10 years. The series
reported by Merck (Ruel et al., 1999) contains a tricyclic system
akin to that in the Searle series. Again EP1/EP3 selectivity can be
readily modulated, as shown by replacement of the terminal
phenyl group in compound 14 (Ki values for human EP1 and
EP3 receptors = 10 and 4000 nM) by methyl (770 and
1000 nM). EP1 antagonists with aryl groups attached to adja-
cent carbons of a 5-membered ring (cyclopentene, thiophene,
pyrrole) have been reported by research groups at GlaxoSmith-
Kline and Merck Frosst. GW-848687 has nanomolar affinity for
the human EP1 receptor, 30-fold lower affinity for the human
TP receptor and >400 times lower affinity for other prostanoid
receptors (Giblin et al., 2007). The picolinic acid residue in
GW-848687 (ring A) is highly acidic (pKa ~1.0) and there has
been considerable SAR work by both research groups on modu-
lating the acidity of this region. The Merck antagonist
MF-266-1, with a m-C(CF3)-(OH)2 substituent (Figure 3), is a
weak acid (pKa = 7.5 for first ionization) that retains high EP1

affinity (Ducharme et al., 2005; Clark et al., 2008). A
m-C(CF3)2-OH substituent in the Merck series and a
p-C(CF3)2-OH substituent in the GlaxoSmithKline series
resulted in lower EP1 affinity (Ducharme et al., 2005; Hall et al.,
2007a). Further modifications to ring A (e.g. m-NH(C=O)
CH2Ph/p-(C=O)NHCH(CH3)Ph substituents) resulted in non-
acidic relatives with high EP1 potency. Compound 15 is also a
non-acidic EP1 antagonist (Hall et al., 2007b).

Therapeutic applications
The upper portion of Table 3 shows that parenteral adminis-
tration of EP1 antagonists of different chemical classes sup-
pressed the allodynic/hyperalgesic signs of inflammation in
the rat and mouse. Intraplantar injection of these antagonists
also opposed pain-producing stimuli, although at the mouse
EP1 receptor AH-6809 had minimal affinity, which suggests an
off-target effect. That said, Khasar et al. (1993) showed that
PGE2 and SC-19220 are only mutually antagonistic when they
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are both injected intradermally and not subcutaneously. More
recently, attention has focused on the role of EP receptors in
central nociception (see Svensson and Yaksh, 2002; Hefferan
et al., 2003; Mebane et al., 2003). Minami et al. (2001) showed
that PGE2 could induce hyperalgesia in the mouse when
injected intrathecally over the dose-range 0.00035–350 pmol.
Deletion of the EP3 receptor gene removed the more sensitive
component of the hyperalgesia. In addition, the selective EP3

agonist ONO-AE-248 induced hyperalgesia at relatively low
doses. Surprisingly, the EP1 knock-out mouse showed a hype-
ralgesic response in the hot-plate test, thereby confounding
the role of EP1 receptors in mediating hyperalgesia (Minami
et al., 2001). EP1 antagonists given intrathecally suppress
flinching, and mechanical allodynia and hyperalgesia
(Table 3), although in certain cases the doses required for
these effects are high. For example, in the studies by Omote
et al. (2002), 100 mg ONO-8711 was injected intrathecally in a
volume of 10 ml, representing an injectate concentration of
23 mM! Even after dilution in the cerebrospinal fluid, EP3

receptors are likely to be blocked as well.
Intravenous ONO-8711 also suppressed afferent nerve dis-

charge to distension of the rat bladder sensitized with acetic
acid (Ikeda et al., 2006). The inference from these studies was
that PG(E2) generated locally activates EP1 receptors on
peripheral sensory neurones. Again EP1/EP3 selectivity is criti-
cal, given that EP3 agonists augment bradykinin-induced
sensory nerve discharge (Kumazawa et al., 1996). Topical
ONO-8713 (like celecoxib) inhibited UV-B-induced skin
inflammation and tumour development in the mouse (Tober
et al., 2006); the higher selectivity of ONO-8713 supports EP1

receptor involvement. PGE2 production, but not COX-1/
COX-2 expression, was suppressed by ONO-8713; the mecha-
nism is not clear.

Despite continuing synthesis of potent EP1 antagonists with
testing in analgesic/anti-inflammatory models, there has been
little solid evidence of clinical efficacy. Sarkar et al. (2003)
reported that ZD-6416, which is related to ZM-325802
(Figure 3; Shaw et al., 1999; Jenkins et al., 2001), inhibited
upper oesophageal pain threshold to electrical stimulation in
human volunteers. However, ZD-6416 does not appear to be
particularly useful in the clinical setting (development profile
obtained from Pharmaprojects; http://www.pharmaprojects.
com).

While the preferred indication for EP1 antagonists has been
for pain, additional therapeutic uses in cancer, osteoporosis,
arthritis, and neurodegenerative and renal disorders have
been suggested. COX-2 inhibitors are of potential value in
reducing colorectal adenomas which, in turn, has created
interest in using prostanoid antagonists as an alternative. The
cardiovascular risk associated with celecoxib in clinical trials
involving colorectal adenoma prevention (Solomon et al.,
2005) would intensify interest in using prostanoid antago-
nists for this indication. ONO-8711 inhibited formation of
colonic crypts (Kawamori et al., 2001) and reduced the fre-
quency of polyp formation in APC1309 mice (Watanabe et al.,
1999; Kitamura et al., 2003b), and aberrant crypt foci in
oxymetazaline-treated mice (Watanabe et al., 1999). Corre-
spondingly, aberrant crypt foci were reduced by 60% in EP1

-/-

receptor mice (Watanabe et al., 1999). COX-2 up-regulation
has also been considered a target for drug treatment of

pathologies involving neurological injury and neurodegen-
eration. The downstream effects of COX-2 neurotoxicity have
been reported to be EP1 receptor-mediated (Kawano et al.,
2006).

Blood pressure in the spontaneously hypertensive rat was
reduced by SC-51322 (10 mg-1·kg-1·day-1, gavage) (Guan
et al., 2007). EP1 receptors appear to regulate BP in the male
but not the female mouse (Audoly et al., 1999; Stock et al.,
2001). In a more detailed study, Guan et al. (2007) showed
that SC-51322 and EP1-receptor gene deletion blunted
pressor responses to 17-phenyl PGE2 and sulprostone,
whereas the pressor response to the PGE1 analogue
MB-28767 (claimed to be ‘a pure EP3 agonist’) was the same
in EP1

+/+ and EP1
-/- mice. While we agree with the authors’

contention that both EP1 and EP3 receptors contribute to the
pressor effects, the utility of MB-28767 may be compromised
by its moderate TP agonism (Lawrence and Jones, 1992) EP1-
receptor gene deletion also reduced the elevated BP and
cardiac hypertrophy following a 4-week infusion of angio-
tensin (Ang) II in the mouse, and 1 mM SC-51322 markedly
attenuated the contractile action of Ang II on the isolated
pre-glomerular arteriole (Guan et al., 2007). How these find-
ings for EP1 receptors integrate with the modest hyperten-
sion and reduction of antihypertensive efficacy associated
with NSAIDs and COX-2 inhibitors in the human setting
(Johnson et al., 1994; Ishiguro et al., 2008) is not clear.
Species and gender appear to be highly influential factors.

EP2 receptor antagonists

Selective EP2 receptor antagonists are essentially unavailable.
This may be partly due to a reluctance to inhibit the potential
anti-inflammatory actions of endogenous PGE2 (see Teixeira
et al., 1997) mediated via EP2 receptors (Noguchi et al., 1999;
Nataraj et al., 2001).

Woodward et al. (1995b) showed that AH-6809 has modest
affinity for human rc-EP2 receptors and antagonized PGE2-
induced activation of adenylyl cyclase with a pA2 of about 6.5.
Lower affinities were found for inhibition of PGE2-induced
relaxation of human bronchus (pA2 = 5.78; Norel et al., 1999)
and guinea pig trachea (pA2 = 5.6, KJ Ong and RL Jones,
unpubl. obs.) (Table 2). This is consistent with its utility for
distinguishing EP1 receptors from other EP subtypes in non-
primate pharmacological preparations (Coleman et al., 1987;
Eglen and Whiting, 1988; Lawrence et al. 1992). However,
given the poor selectivity of AH-6809 in the low micromolar
range, findings arising from its use in high concentration as
an EP2 antagonist (e.g. 100 mM in Aronoff et al., 2004) should
be approached with caution. Ki values for rc-EP2 receptors of
about 1 mM have been found for some compounds in combi-
natorial studies (see Murase et al., 2008b); it should be pos-
sible to build on these observations.

EP3 receptor antagonists

Development
EP3 antagonism in a series of biaryl-acylsulphonamides was
reported in 2002 by Merck (Gallant et al., 2002). The lead
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compound was an AT1 receptor antagonist 16 (Figure 4) with
a binding KD of 7 mM for the human EP3 receptor. In a com-
binatorial approach, reversal of the acylsulphonamide and
insertion of an ethylene spacer yielded 17 with an EP3 KD of
25 nM and minimal binding to other prostanoid receptors. A
related analogue, L-798106, at 0.2 mM blocked the pre-
synaptic (EP3) inhibitory actions of sulprostone on guinea pig
vas deferens and trachea with pA2 values of 7.5 and 7.8 respec-
tively (Clarke et al., 2004). L-798106 (0.2–1 mM) also caused
parallel displacement of log concentration–response curves
for contraction of rat femoral artery by sulprostone (in
synergy with phenylephrine) (Hung et al., 2006). L-826266, a
chloro analogue of L-798106, has been used in other studies
despite the lack of detailed information on its basic pharma-
cology. Schlemper et al. (2005) showed that L-826266 at
30 mM inhibited both PGE2- and bradykinin-induced relax-
ation of guinea pig trachea, and proposed that bradykinin
induces de novo synthesis of PGE2, which then activates EP3

receptors. However, the specificity of L-826266 at this high
concentration is unknown. An alternative explanation is that
L-826266 modestly blocks EP2 receptors thereby allowing the
action of PGE2 on the contractile EP1 system in the trachea to
dominate. Oliva et al. (2006) reported that L-826266 injected
(as 0.1 mL of 1.25–5 mM solutions in 20% DMSO/PSS) into the
periaqueductal grey matter of the mouse brain suppressed the
late hyperalgesic response to intradermal formalin. However,
the concentration of L-826266 at the site(s) of action is inde-
terminate and interpretation of the finding is difficult because
similar high ‘doses’ of EP1 and EP4 antagonists and AH-6809
also suppressed the formalin response.

DeCode Genetics has described a series of related molecules
containing an indole nucleus, from which DG-041 (Figure 4)
was selected for clinical investigation (Singh et al., 2009).
DG-041 had a IC50 of 8.1 nM in a EP3/Ca2+ flux FLIPR assay;
corresponding values in DP1 and DP2 assays were 131 and
>10 000 nM respectively (Singh et al., 2009). SAR studies
involved modifications to the terminal aryl moieties, together
with the indole unit. Compounds with an inverted indole
nucleus retain high EP3 affinity (Zhou et al., 2009a,b), as do
indolones and hexahydro-indolones (O’Connell et al., 2009).
Saturation of the a.b-double bond also produced highly
potent EP3 antagonists, while further saturation of the
remaining double bond in the hexahydro-indolone residue
resulted in marked reduction in affinity. Much of DeCode’s
work was directed towards improving water solubility: pre-
dicted n-octanol/water partition coefficients (ClogP) for
DG-041, L-798106 and L-826266 are 6.6, 6.9 and 7.4 respec-
tively (ChemAxon freeware). In this context, our recent
studies on L-798106 and L-826266 have shown a slowly
developing block of EP3 agonist-induced contraction on
guinea pig aorta, affording pA2 values of 7.96 and 7.58 respec-
tively after 3-h contact (Jones et al., 2008). As expected, highly
potent antagonists such as BMY-180291 (TP, pA2 = 9.8) and
doxepin (histamine H1, pA2 = 9.6) also had slow onsets at
low-nanomolar concentrations. However, the slow onsets of
L-798106 and L-826266 may be related to their high lipophi-
licity rather than their (moderate) receptor affinity.

Merck-Frosst researchers have also identified EP3 antago-
nism in ortho-substituted cinnamic acid derivatives, which
correspond to the left-hand portions of the ene-acyl-

Figure 4 EP3 receptor antagonists. The AT1 receptor antagonist, compound 16, is a lead molecule for the biaryl-ene-acyl-sulphonamide
antagonists (pharmacophore in red). The left-hand portion of this pharmacophore corresponds to the cinnamic acid moiety in compounds 18
and 19 (see broken brackets). L-826266 is a chloro analogue of L-798106. The lower-middle brackets show modifications to the indole nucleus
in the EP3 antagonist series of DeCode Genetics.
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sulphonamide antagonists shown in Figure 4. Compound 18
has a binding KD for the human EP3 receptor of 20 nM (Juteau
et al., 2001), while compound 19 has the highest binding
affinity (3 nM) and behaved as a pure antagonist in a human
EP3/adenylyl cyclase assay (pA2 = 8.22; Belley et al., 2005).
Compound 19 is also highly lipophilic (ClogP = 8.29).

ONO-AE3-240 is reported to be a highly selective EP3

antagonist (mouse EP3/EP1 selectivity ratio = 2500; Amano
et al., 2003), but its structure has not been disclosed.

Therapeutic applications
Like most prostanoid receptors, the EP3 receptor has been
implicated in pain of various aetiologies. These include allo-
dynia produced by HIV-1 glycoprotein gp 120 (Minami
et al., 2003) and PGE2 (Kassuya et al., 2007), acute herpetic
pain (Takasaki et al., 2005), thermal hyperalgesia (Oka et al.,
1994) and formalin-induced hyperalgesia (Oliva et al., 2006).
A major role for EP3 (and IP) receptors has been claimed in
endotoxin-induced enhancement of pain perception (Ueno
et al., 2001). Intravenous DG-041 also suppressed the vis-
ceromotor reflex to bladder distension in the rat (Su et al.,
2008a); the authors defined this antagonist as brain non-
penetrant, but no pharmacokinetic evidence was presented.
Intrathecal application of L-798106 and DG-041 also pro-
duced a long-lasting suppression of the visceromotor reflex,
while intracerebroventricular administration produced only
a transient reduction (Su et al., 2008b). However, EP3 ago-
nists are known to exert gastrointestinal cytoprotection and
attenuate gastric acid secretion in animal models (Bunce
et al., 1990; Kunikata et al., 2002). Although it is widely
assumed that there is a similar involvement of EP3 receptors
in man, an extensive search of the literature provides only
circumstantial evidence for this. For example, while miso-
prostol is clinically useful in suppressing gastroduodenal
erosion (see Hawkey, 2000), its selectivity is not high
enough to infer the involvement of EP3 receptors (EP3 ~ EP2

~ EP4 >> EP1 for misoprostol-free acid; Abramovitz et al.,
2000). A reduction in myocardial ischaemic damage was also
achieved with EP3 agonist treatment in the rat (Zacharowski
et al., 1999). Thus, it is feasible that the therapeutic use of
EP3 antagonists will result in a side effect profile at least
comparable to that of COX inhibitors. This possibility does
not seem to have hindered development work on other uses
of EP3 antagonists as discussed below.

It has been suggested that endogenous PGE2 activates EP3

receptors on stromal cells surrounding a tumour causing the
release of vascular endothelial growth factor, which then pro-
motes angiogenesis and tumour growth (Amano et al., 2003).
Injection of the EP3 antagonist ONO-AE3-240 around
sarcoma-180 tumours in the mouse markedly suppressed
these effects in a manner similar to EP3 receptor gene-
deletion; ONO-8711 (EP1 antagonist) and ONO-AE3-208 (EP4

antagonist) were ineffective. In contrast, EP3 agonists acting
on all three mouse EP3 receptor isoforms expressed in HEK-
293 cells caused cell clustering and inhibited their prolifera-
tion via a G12-RhoA pathway (Macias-Perez et al., 2008).

A further possible therapeutic application of an EP3 antago-
nist is the treatment of pre-term labour. Based on the known
activity of misoprostol (Sanchez-Ramoz et al., 1997) and sul-

prostone (Fruzzetti et al., 1988), it appears that EP3 receptor
stimulation produces cervical ripening, a critical event that
precedes parturition. An EP3 antagonist could be effectively
combined with a tocolytic, such as an EP2 agonist (Senior
et al., 1993), to provide therapy for pre-term labour. The EP3

receptor has been uniquely associated with febrile responses
(Ushikubi et al., 1998). However, development of an EP3

antagonist for treating fever seems unlikely, given that low-
cost COX inhibitors are highly effective in reducing body
temperature.

Finally, DG-041 has shown promise in the treatment of
peripheral cardiovascular disease. Activation of EP3 receptors
on human platelets enhances aggregation induced by a
variety of agents (in the presence of a TP antagonist); inhibi-
tion of adenylyl cyclase/priming of protein kinase C is
thought to be the mechanism (Matthews and Jones, 1993;
Vezza et al., 1993). In addition, there is increased bleeding
tendency and increased susceptibility to thromboembolism
in the EP3 receptor knock-out mouse (Ma et al., 2001). DG-041
at 0.03–3 mM inhibited the enhancement by sulprostone of
ADP- or collagen-induced aggregation in human platelet-rich
plasma (PRP) (Heptinstall et al., 2008; Singh et al., 2009). The
pA2 value of 8.3 (our calculation from Heptinstall et al., 2008
data) is probably an underestimate of the affinity owing to
plasma protein binding of DG-041. In the rat, DG-041 at 5 or
60 mg·kg-1 (by gavage; co-administration with clopidogrel)
inhibited enhancement of platelet aggregation induced by
PGE2 ex vivo; there was no increase in bleeding time compared
with clopidogrel alone (Singh et al., 2009). A similar profile
was obtained with DG-041 in Phase I trials in healthy subjects
(reported in Heptinstall et al., 2008).

EP4-receptor antagonists

Development
The first EP4 antagonist to be reported was AH-23848
(Coleman et al., 1994a), a close relative of the selective TP
antagonist GR-32191 (Figure 8). Ligand binding studies on
human rc-receptors indicated low EP selectivity for AH-23848,
with Ki values for EP1, EP2, EP3, EP4 and IP receptors being 45,
50, 4.4, 14 and >100 mM respectively (Abramovitz et al.,
2000). However, its selectivity in functional assays appears to
be higher and it has been of considerable utility in differen-
tiating the EP2, EP4 and IP agonist activities of prostanoid
ligands. For example, Jones and Chan (2001) used AH-23848
at 30 mM to demonstrate that the PGI2 analogues cicaprost
and AFP-07 relax certain vascular preparations by activating
both EP4 and IP receptors. Moreover, Lai et al. (2008a)
showed that pulmonary artery smooth muscle cells from
monocrotaline-treated rats have a reduced IP receptor density
and that iloprost-induced cAMP elevation is blocked by
AH-23848, and therefore likely to be due to activation of EP4

receptors.
AH-23848 has since been overtaken by more potent

agents. Antagonists in the major group contain an acyl-
sulphonamide unit (Figure 5) and show some similarity to the
ene-acyl-sulphonamide EP3 antagonists. Indeed, L-161982 is a
methyl analogue of the lead molecule 16 for the Merck EP3
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antagonists. L-161982 was reported to have a pA2 of about 8.5
in rc-EP4 receptor – adenylyl cyclase assays (Machwate et al.,
2001). In a rat native EP4 assay, L-161982 inhibited PGE2-
induced cAMP accumulation with an IC50 of about 30 nM,
while forskolin-induced cAMP accumulation was unaffected
by 10 mM L-161982. In similar functional assays, CJ-023423
afforded pA2 values of 8.3 and 8.2 for human and rat rc-EP4

receptors using the Schild protocol (Nakao et al., 2007). In
binding assays, CJ-023423 showed weak affinity for human
EP2 receptors and PAF receptors, while interactions with other
prostanoid receptors and a range of non-prostanoid receptors
were minimal.

GW-627368 has pKi values for binding of 7.0 and 6.8 for
human rc-EP4 and TP receptors respectively; binding to other
prostanoid receptors is minimal (Wilson et al., 2006). Corre-
spondingly, a pA2 of 7.9 was obtained for GW-627368 in a
human rc-EP4 receptor – adenylyl cyclase assay, with good
evidence for competition. On human pulmonary vein,
GW-627368 had a pA2 of 7.06 against ONO-AE1-329 (Table 2;
Foudi et al., 2008); its higher affinity against PGE2 may have
been due to opposing contractile activity. GW-627368 had a
higher affinity on piglet saphenous vein (pA2 = 9.2) with a

linear Schild plot up to a concentration ratio of about 60;
further rightward shift of the agonist curve was insignificant
owing to PGE2 activating a less sensitive EP2 relaxant system
(Wilson et al., 2006). GW-627368 at 10 mM did not affect TP
receptor-induced contraction under the same conditions.
Results for rabbit saphenous vein were discrepant: Wilson
et al. (2006) showed that 10 mM GW-627368 did not affect
PGE2-induced relaxation implying the presence of an EP2

system only, while Jones and Chan (2005) found a right-shift
of about 1 log unit with 1 mM GW-627368, consistent with
the presence of EP2 and EP4 systems; GW-627368 did not
antagonize relaxation induced by either the selective EP2

agonist ONO-AEI-259 or the PGI2 analogue, taprostene in the
latter experiments. MF-498 (Clark et al., 2008), which is quite
similar in structure to GW-627368, undergoes oxidative/
hydrolytic metabolism at the three regions indicated in
Figure 5; compound 20 was considerably more resistant to
attack while retaining high EP4 antagonist affinity (Burch
et al., 2008). The most recent addition to this group is BGC-
20-1531 (Maubach et al., 2009). It exhibits surmountable
antagonism of PGE2-induced relaxation of human cerebral
and middle meningeal and dog carotid and middle meningeal

Figure 5 EP4 receptor antagonists. L-161982 is a methyl analogue of compound 16 in Figure 4. Acyl-sulphonamido residues are shown in red.
The bonds indicated by asterisks in MF-498 are subject to oxidative/hydrolytic attack in vivo; the corresponding substituents in compound 20
prevent these transformations.
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arteries in vitro, while having no effect on PGE2 (probably
EP3)-induced contraction of human coronary, pulmonary and
renal arteries.

A second looser group of amide-containing EP4 antagonists
is represented by ONO-AE2-227, ONO-AE3-208 and
CJ-042794 (Figure 5). Binding studies indicate that ONO-AE2-
227 and ONO-AE3-208 retain considerable affinity for EP3

receptors (Ki = 21 and 30 nM; Mutoh et al. 2002; Kabashima
et al. 2003) and this must be borne in mind when interpreting
in vivo data (see later). CJ-042794 behaved competitively in
functional assays (Schild protocol) involving human and rat
rc-EP4 receptors (Murase et al., 2008a,b). Its EP4/EP3 selectivity
ratio is very high, but it still retains measurable affinity for
human EP2 receptors (pKi = 6.2).

Therapeutic applications
Recent studies involving parenteral administration of several
EP4 antagonists (AH-23848, CJ-023423, CJ-042794, MF-498,
ONO-AE3-208) have clearly demonstrated a major involve-
ment of EP4 receptors in small-animal models of inflamma-
tion (Table 3). Joint pain, mechanical and thermal
hyperalgesia and oedema were markedly suppressed, often
equivalent to the efficacy of selective COX-2 inhibitors such
as rofecoxib. A peripheral site of action seems likely given
that intraplantar administration of L-161982 suppressed
carrageenan-induced mechanical allodynia in the mouse
(Kassuya et al., 2007). Whether block of the EP4 receptor alone
produces an effective anti-inflammatory drug in man remains
to be seen. Moreover, PGE2 may have a protective role in
inflammation. Takayama et al. (2002) showed that PGE2 sup-
pressed chemokine production stimulated by lipopolysaccha-
ride in human macrophages; L-161982 at 100 nM blocked
this action.

Prostanoid EP4 receptors, indeed nearly all EP receptor sub-
types, have been implicated as contributors to colon tumori-
genesis caused by excessive production of PGE2 (Fujino and
Regan, 2003; Majima et al., 2003; Masataka et al., 2003;
Mutoh et al., 2006). The selective EP4 agonist ONO-AE1-329
(0.1–1 mM) increased colony formation in the human colon
cancer cell line HCA-7 (Mutoh et al., 2002) and L-161982
blocked PGE2-induced proliferation of HCA-7 cells
(Cherukuri et al., 2007). In both the oxymetazoline model of
aberrant crypt foci (putative preneoplastic lesions) and the
Min mouse model of intestinal polyp development, the EP4

antagonist ONO-AE2-227 produced about a 67% reduction
in the appropriate scores (Mutoh et al., 2002). Aberrant crypt
foci were similarly reduced in EP4

-/- mice. In the APC1309
mouse, ONO-AE2-227 had a preferential effect on polyp size,
while the EP1 antagonist ONO-8711 had a more pronounced
effect on polyp number, and a combination of antagonists
behaved additively (Kitamura et al., 2003b). In the context of
(tumour) vascularity, ONO-AE3-208 reduced IL-1b-induced
angiogenesis in the mouse cornea at an oral dose of
1 mg·kg-1 o.d. (Kuwano et al., 2004). Finally, pretreatment of
mouse mammary tumour cells with AH-23848 and ONO-
AE3-208 followed by washing and immediate injection into
immunologically compatible mice reduced pulmonary
tumour score (Fulton et al., 2006). These comprehensive
studies provide encouragement that EP4 receptor antagonists

may provide a safer replacement for COX-2 inhibitors in
treating colon cancer. As, however, all EP receptor subtypes
have been implicated in colon cancer, a pan-PGE synthase
inhibitor may be more effective in preventing the key cell
proliferative and angiogenic events. Arguably, and somewhat
paradoxically, the EP4 receptor has also been shown to par-
ticipate in the maintenance of intestinal homeostasis by pre-
serving mucosal integrity. In both EP4

-/- mice and wild-type
mice treated with an EP4 antagonist (ONO-AE3-208), suscep-
tibility to the development of colitis was reported in a model
of inflammatory bowel disease (Kabashima et al., 2003;
Narumiya, 2003).

There has been interest in using EP4 agonists for their ana-
bolic effects on bone (Raisz, 2006). The EP4 antagonist
L-161982 at a dose of 10 mg·kg-1·day-1 reversed bone forma-
tion induced by PGE2 in the rat, without affecting its
diarrhoeal action (Machwate et al., 2001). Also, human mes-
enchymal stem cells in culture secreted PGE2 via COX-2,
which was associated with production of bone morphoge-
netic protein-2 (BMP-2), a factor that stimulates differentia-
tion of precursor mesenchymal cells into mature bone. The
selective COX-2 inhibitor, NS-398, and the EP4 antagonist,
ONO-AE3-208, (concentration not specified) suppressed
BMP-2 expression (Arikawa et al., 2004). These findings iden-
tify bone loss as a potential side effect of EP4 antagonists.

In vitro, EP4 vasodilator systems typically exhibit high sen-
sitivity to PGE2 and this property is reflected in the role of
PGE2 in maintaining the open state of the ductus arteriosus
during gestation in human and animal species. Strong expres-
sion of EP4 (and IP) receptors is found in ductus tissue from
the newborn infant and child (Leonhardt et al., 2003).
Towards the end of gestation, smooth muscle cells within the
ductus migrate to the endothelial lining where they form
intimal cushions. Declining PG levels at birth result in ductus
constriction, thereby bringing the intimal cushions into close
contact and effecting permanent closure. Intimal cushion for-
mation is also driven by EP4 receptor activation (Yokoyama
et al., 2006). The COX inhibitor, indomethacin, is commonly
used to treat failure of ductus closure, but its efficacy is poor in
a substantial proportion of cases, perhaps related to suppres-
sion of intimal cushion development (see Ivey and Srivastava,
2006). AH-23848 blocked PGE2-induced relaxation of the
rabbit and sheep isolated ductus arteriosus preparations
(Smith et al., 1994; Bouayad et al., 2001), while ONO-AE3-208
constricted the ductus of fetal and neonatal rats in vivo
(Momma et al., 2005). Whether an EP4 antagonist would be
better than a COX inhibitor in treating patent ductus in
premature infants is not yet clear.

A second potential role for an EP4 vasodilator system is the
genesis of vascular headache in migraine. EP4 antagonists
block PGE2-induced relaxation of human-isolated middle
cerebral artery (Davis et al., 2004; Maubach et al., 2009) and
the picture has been enlarged to include the interaction of
endogenous PGE2 with calcitonin gene-related peptide release
from trigeminal nerves (Maubach et al., 2009). The use of
AH-23848 and L-161982 also has provided evidence for a role
of EP4 receptors in substance P release by stretching of the
renal pelvic wall (volume expansion) leading to activation of
renal sensory afferents and subsequent diuresis/natriuresis
(reno-renal reflex) (Kopp et al., 2004).
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FP receptor and prostamide receptor antagonists

Development
A variety of FP receptor antagonists have been reported in the
past, but none has stood up to rigorous analysis. Thus, PGF2a-
1-dimethylamine and PGF2a-1-dimethylamide (Maddox et al.,
1978; Stinger et al., 1982) exhibited no meaningful FP antago-
nist or agonist activities (Sharif et al., 2000; Woodward et al.,
2008). Phloretin (Kitanaka et al., 1993) was non-selective and
very weak in blocking fluprostenol-mediated phosphoinoside
turnover in rat A7r5 vascular smooth muscle cells (Sharif
et al., 2000). Similarly glibenclamide (Delaey and Van de
Voorde, 1995) was a weak, non-selective prostanoid antago-
nist (Sharif et al., 2000).

AL-3138 and AL-8810, both PGF2a analogues (Figure 6),
have received a degree of acceptance as FP antagonists
(Griffin et al., 1999; Sharif et al., 2000). AL-8810 proved
useful in studying PGF2a-mediated up-regulation of the
orphan nuclear receptor Nur 77 (Liang et al., 2004).
However, further studies reveal that they are neither potent
nor selective. For example, AL-8810 appears to block TP

receptors (Hutchinson et al., 2003), an effect that has been
confirmed in human rc-TP receptor stable transfectants
(A.H. Krauss and D.F. Woodward, unpublished). In addition,
both agents are FP partial agonists. This can be seen in the
original report of AL-8810 on phosphoinositide turnover
(Griffin et al., 1999) and is corroborated by the finding of
myogenic activity in the mouse uterus (Hutchinson et al.,
2003). AL-8810 induced a more pronounced Ca2+ signal in
human rc-FP stable transfectants (Y. Liang and D.F. Wood-
ward, unpublished) and was a full agonist in the cat isolated
iris preparation (Woodward et al., 2007); the latter action
was not blocked by a prostamide antagonist (Woodward
et al., 2007; see later), so it presumably reflects FP receptor
agonism.

A series of octapeptides (THG-131 derivatives, Figure 6)
have been claimed to possess selective FP antagonist activity
(Chemtob and Peri, 2006; Peri et al., 2006). In particular,
THG-113.31 at 1 mM markedly inhibited PGF2a-induced con-
traction of pig retinal blood vessels, while having minimal
effect on contraction to 17-phenyl PGE2, U-46619, phenyle-
phrine, Ang II and endothelin-1; the inhibition of PGF2a

Figure 6 FP receptor and prostamide receptor antagonists. The natural ligand PGF2a and its 1-ethanolamide derivative, prostamide F2a, are
shown in the box. AL-3138 and AL-8810 are FP partial agonists in many systems; a = corresponding side-chain in PGF2a. The THG analogues
are peptides: amide (CO-NH) residues are shown as red bars. The AGN analogues (upper right) are prostamide receptor antagonists; C1-amide
residues are shown in blue.
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contraction was insurmountable. In addition, THG-131.31
inhibited the associated phosphoinositide hydrolysis with an
IC50 of about 30 nM. However, THG-131.31 competed poorly
with [3H]-PGF2a for binding to human rc-FP receptors (~13%
at 10 mM). Several other studies have cast doubt on the utility
of THG-131.31. At 10 mM, THG-113.31 showed fairly weak
antagonism of the contractility of longitudinal and circular
strips of sheep myometrium induced by PGF2a; there was no
effect on PGE2 contractions (Hirst et al., 2005). Also, 10 mM
THG-113.31 had no effect on PGF2a-induced contraction of
human pregnant myometrium, while inhibiting spontaneous
and oxytocin-induced contractions at much lower concentra-
tions (Friel et al., 2005). Finally, Doheny et al. (2007) showed
that THG-113.31 at 10–50 mM enhanced BKCa channel
opening in isolated myocytes from human uterus, an effect
that was reversed by iberiotoxin. Several chemically simpler
peptidomimetics in the THG series showed more potent block
of PGF2a-induced contraction than THG-113.31 (Figure 6,
Table 2; Peri et al., 2006); it would be of interest to have full
pharmacological profiles.

Currently, the most convincing FP antagonist is the non-
prostanoid AS-604872 (Cirillo et al., 2007). It has Ki values of
35, 158 and 323 nM for human, rat and mouse rc-FP receptors
and its selectivity was 20-fold for EP2 receptors and greater
than 300-fold for other prostanoid receptors. AS-604872
showed no agonist activity in a human FP receptor – inositol
phosphate assay and had an IC50 of 47 nM against PGF2a.
In vivo, AS-604872 (1–30 mg·kg-1, i.v.) inhibited PGF2a-
induced uterine contraction in the non-pregnant rat; inhibi-
tion of oxytocin-induced contraction was slight.

Prostamide research originated from studies on neutral
PGF2a analogues and notably bimatoprost (17-phenyl PGF2a-
1-ethylamide), an effective anti-glaucoma drug (Woodward
et al., 2003; 2004). As previously mentioned, neutral PGF2a

analogues show only weak affinity for FP receptors (Maddox
et al., 1978; Schaaf and Hess, 1979), a profile subsequently
confirmed for -OH, -OCH3 and -CON(R)2 C1-substitutes
(Woodward et al., 2000; 2008; Matias et al., 2004). The phar-
macology of bimatoprost was similar, with no meaningful
activity at FP receptors but pronounced activity in certain
preparations such as cat lung strip, cat iris, rabbit uterus,
and human ciliary smooth muscle cells (Liang et al., 2003;
Woodward et al., 2003b; Matias et al. 2004; Chen et al.
2005). The pharmacology of bimatoprost appeared indistin-
guishable from that of PGF2a-1-amides, but this could not be
rationalized until the discovery that anandamide (arachi-
donic acid-1-ethanolamide) was a substrate for COX-2 (Yu
et al., 1997).

PGE2-1-ethanolamide (prostamide E2) was the first prosta-
mide to be discovered and was identified as the major product
following addition of anandamide to rc-COX-2 or cells
expressing COX-2, but not COX-1 (Yu et al., 1997). Subse-
quently, more extensive studies demonstrated that COX-2
oxidizes anandamide to endoperoxide intermediates, which
are converted by specific PG synthases to the various prosta-
mides (Kozak et al., 2002; Koda et al., 2004; Yang et al., 2005;
Moriuchi et al., 2008). Despite being different terminal bio-
synthetic products, the evidence to date suggests that prosta-
mides D2, E2 and F2a interact with a single receptor to exert
their effects. Prostamide F2a and its analogues are, however,

about 10 times more potent than prostamides D2 and E2

(Woodward et al., 2007).
Initial pharmacological characterization of the prostamides,

for example prostamide E2 (Ross et al., 2002), relied on agonist
studies. In the context of PGF analogues, FP agonists (17-
phenyl PGF2a and PGF2a) and bimatoprost produced Ca2+

signals in entirely different cells in a cat iris smooth muscle cell
preparation (Spada et al., 2005), suggesting the existence of a
receptor with a distinct preference for prostamide F agonists.
The receptor structure appears to involve heterodimerization
of the wild-type and alternative mRNA splicing variants of the
FP receptor, both encoded by PTGFR, the FP receptor gene
(Liang et al., 2008). This FP/alt-FP co-expression is analogous to
the isoprostane binding site which is formed as a result of IP/TP
receptor heterodimerization (Wilson et al., 2004).

The strategy for discovering a prostamide antagonist was to
identify antagonists in cluster 2 of the prostanoid receptor
evolutionary tree (Narumiya et al., 1999) and then form cor-
responding C1-amides. Cluster 2 contains the TP receptor,
whose stable agonists have been a starting point for antago-
nists at other receptors (DP1, see Figure 1; EP1, see Figure 3).
Based on the oxabicycloheptane analogue BMS-180291
(Figure 8) (Webb et al., 1993), two prototype prostamide
antagonists AGN-204396 (Figure 6) and AGN-204397 were
identified (Woodward et al., 2007; 2008). These agents
showed good prostamide F/FP selectivity, but were of low
affinity (pA2 ~5.5) and also blocked TP receptors. Substituting
oxygen at C3 dramatically enhanced prostamide affinity, by
as much as 100-fold for AGN-211334 and AGN-211335 (Wan
et al., 2007; Liang et al., 2008; Woodward et al., 2008). AGN-
211334 and AGN-211335 potently inhibited prostamide F2a

and bimatoprost responses in cat iris preparations, but did not
alter responses to FP agonists (Wan et al., 2007; Liang et al.,
2008). AGN-211334 blocked the increase in conventional
aqueous humour outflow produced by bimatoprost in the
human perfused anterior segment preparation (Wan et al.,
2007), thereby demonstrating that the effects of bimatoprost
in the human eye are prostamide receptor-mediated; previ-
ously, it has been suggested that bimatoprost’s activity is
dependent on deamidation to the FP-active free acid in ocular
tissue (Camras et al., 2004). AGN-211335 blocked the second-
ary Ca2+ wave, myosin light chain phosphorylation, and Cyr
61 up-regulation induced by bimatoprost in the FP/alt-FP
prostamide system (Liang et al., 2008). These second-
generation prostamide antagonists are likely to be sufficiently
potent for in vivo studies.

Therapeutic applications
Prevention of pre-term labour (tocolysis) is probably the only
therapeutic modality where a FP antagonist may be of value.
This is a serious and unmet medical need given that prema-
ture birth accounts for 60–80% of perinatal deaths (Golden-
berg, 2002). Parturition is prevented in FP-/- mice (Sugimoto
et al., 1997) confirming a significant role for PGF2a (see Challis
et al., 2002 for a review of PG involvement). THG-113.31 is
tocolytic in the pregnant sheep (Hirst et al., 2005) and may be
useful for delaying pre-term birth (Olson, 2005). AS-604872
suppressed spontaneous uterine contractions in late-term
pregnant rats and delayed preterm birth caused by
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mefipristone in pregnant mice; AS-604872 appeared to be
more effective than the b2-adrenoceptor agonist ritodrine
(Chollet et al., 2007). It is not yet clear whether these findings
will translate into an effective drug in human reproduction.

Prostanoid FP receptors have been implicated in cardi-
omyocyte hypertrophy (Pönicke et al., 2000; Xu et al., 2008)
and cancer (Fujino and Regan, 2001) and may play a role in
regulating water and solute transport based on in situ hybrid-
ization studies in the mouse kidney (Saito et al., 2003). The
utility of a selective FP antagonist is, however, unclear.

The therapeutic utility of prostamide antagonists is simi-
larly uncertain. Increased anandamide levels may result in the
formation of prostamides as major products in inflammation
and infection (Glass et al., 2005). Testing of AGN 211334, or a
close congener, in relevant animal models should provide
evidence for or against a functional role of prostamides.

IP receptor antagonists

Development
IP receptor antagonists are a recent development based on the
potential role of PGI2 in mediating pain (Bley et al., 1998). In
an extensive series of studies, two structurally distinct classes
of selective IP antagonist emerged from focused chemical
library screening and synthetic chemistry (Bley et al., 2006)
(Figure 7). The 2-(phenylamino)-imidazoline series is repre-
sented by RO-1138452 and compound 21 (Clark et al., 2004;
Keitz et al., 2004), while the N-substituted phenylalanine
series has a ‘traditional’ carboxylate in the phenylalanine

residue and is typified by RO-3244019 (Fitch et al., 2004) and
its difluoro analogue RO-3244794 (Bley et al., 2006).

RO-1138452 has high affinity for human native (platelet)
and rc-IP receptors, with pKi values of 9.3 and 8.7 respectively
in studies utilizing [3H]-iloprost, although it also displays con-
siderable affinity for PAF (7.9) and imidazoline (8.3) receptors
(Bley et al., 2006). In functional studies in platelets (Jones
et al., 2006), pA2 values were lower than Ki values obtained in
radioligand competition studies with platelet membrane
preparations and for inhibition of carbacyclin-induced cAMP
formation in cells over-expressing rc-IP receptors (Bley et al.,
2006); the difference was attributed to protein binding in
studies involving PRP. The pA2 values obtained in isolated
blood vessel preparations (human pulmonary artery 8.20,
guinea pig aorta 8.39 and rabbit mesenteric artery 8.12) were
intermediate between values obtained in PRP and plasma
membranes/cells in buffer (Jones et al., 2006). The slight sup-
pression of the cicaprost maximum response seen with higher
concentrations of RO-1138452 was attributed to functional
antagonism emanating from the (albeit weak) EP3 agonist
action of cicaprost. However, RO-1138452 displayed an insur-
mountable antagonist profile in studies of chemokine release
from human airway epithelial cells using taprostene (see
Table 1) as IP agonist (Ayer et al., 2008). Moreover,
RO-1138452 inhibition of taprostene-induced cAMP response
element-dependent transcription was not reversed over a 20-h
‘washout’ period. These data could not be ascribed to covalent
receptor inactivation, allosterism or a state of antagonist
hemi-equilibrium and may be due to a pseudo-irreversible
interaction with the IP receptor (Ayer et al., 2008).

Figure 7 IP receptor antagonists. The natural ligand PGI2 (prostacyclin) is shown in the box. 2-(Phenylamino)-imidazoline moieties are shown
in blue and phenylalanine residues in red (S-configuration in compound 24). RO-3244794 is a difluoro analogue of RO-3244019.
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The N-substituted phenylalanines 22 and 23 (Nakae et al.,
2005) are weak IP antagonists, while the greater potency of 24
is associated with as S-configuration in the phenylalanine
residue (Brescia et al., 2007). RO-3244794 has no meaningful
activity at EP1, EP3, EP4 and TP receptors; no data were pro-
vided for DP1, DP2, EP2 or FP receptors (Bley et al., 2006).
While RO-1138452 did not block EP2 receptor-mediated relax-
ation in guinea pig aorta (pA2 < 6.0; Jones et al., 2006),
RO-3244794 had a pA2 of 6.92 for the human rc-EP2 receptor
expressed in HEK-293 cells (S.M. Hill and M.A. Giembycz,
unpubl. data). Compound 24 did not bind to human EP2 and
EP4 receptors (Brescia et al., 2007). Strictly speaking, the
missing data related to these compounds (e.g. RO-1138452 at
DP2 and FP receptors; Jones et al., 2006) need to be addressed.
In the context of systemic drug design, RO-3244794 has much
greater oral bioavailability than RO-1138452 (51% vs. 0.7% in
the rat) (Bley et al., 2006).

Therapeutic applications
Pain has been the initial focus for IP antagonists based on IP
receptor agonist effects and IP receptor distribution (reviewed
by Bley et al., 1998). Altered pain perception and inflamma-
tion were observed in IP-/- mice (Murata et al., 1997). Subse-
quently, IP antagonists were shown to reduce pain responses
in models where prostanoids have been implicated. These
include acetic acid-induced abdominal constriction,
mechanical hyperalgesia produced by carrageenan and pain
associated with models of osteoarthritis and inflammatory
arthritis (Bley et al., 2006; Pulichino et al., 2006). Such anal-
gesic effects are accompanied by anti-inflammatory proper-
ties, which is invariably the case. In a collagen-induced
arthritis model in mice, 21 produced effective inhibition
when administered as a pretreatment, but was inactive when
given after the initiation of the arthritis (Pulichino et al.,
2006). RO-3244794 and indomethacin were equi-effective in
reducing carrageenan-induced rat paw oedema and more
effective than rofecoxib in inhibiting the foot weight distri-
bution change associated with intra-articular injection of
monoiodoacetate (Bley et al., 2006). Ostensibly, these results
imply that IP receptors provide a singular target that would
result in drugs that are at least as effective as NSAIDs and
COX-2 inhibitors. The role of EP receptors in pain/
inflammation has already been discussed. Despite a satisfac-
tory preclinical profile, strong circumstantial evidence
suggests that EP1 antagonists were a failure in clinical trials.
This, in turn, tends to cast doubt over the clinical prognosis
for IP antagonists. Given the number of prostanoids that may
be released locally and the even greater number of target
receptors available, it may be regarded as counter-intuitive to
propose that inflammation can be attributed to only one type
of prostanoid receptor.

A role for PGI2 in mediating the sensitized release of sub-
stance P from rat dorsal root ganglion neurons has been
suggested based on studies with 23 (Nakae et al., 2005).
Related to this is the potential use of IP antagonists for
bladder disorders. In rat models of bladder function,
RO-3244019 dose-dependently decreased bladder contraction
frequency and increased micturition threshold and voiding
interval (Cefalu et al., 2007). RO-3244019 was also effective in

treating neurogenic detrusor overactivity arising from spinal
cord injury in the rat (Khera et al., 2007). Again, these results
are of uncertain predictive value for clinical success, because
indomethacin exhibited good activity in these models. The IP
antagonist, BAY-73-1449 (Figure 7), was effective in acutely
reducing shunt vessel blood flow in a rat model of portal
hypertension (Bexis et al., 2008); full details of its pharmacol-
ogy are unavailable.

Finally, side effects originating from perturbation of the
TXA2/PGI2 balance could be greater with IP antagonists than
with COX-2 inhibitors, including hypertension, stroke, myo-
cardial infarction and atherosclerosis. Nephrotoxicity and K+

and Na+ retention also may occur (Nasrallah and Hébert,
2005), because prostacyclin synthase (PGIS) and COX-2 defi-
ciencies produce similar renal toxicity. This suggests a protec-
tive role for PGI2, but it is important to note that no marked
renal phenotype occurs in TP-/- or IP-/- mice (Breyer and
Breyer, 2000; Yokoyama et al., 2002; Nasrallah and Hébert,
2005).

TP receptor antagonists

Development
Elucidation of the structures of PGH2 and TXA2 (Figure 8) was
soon followed by a range of carba/thia bicyclic analogues (see
Wilson and Jones, 1985). One aim was to produce a chemi-
cally stable TP agonist (e.g. U-46619, STA2); another was to
investigate the potential for TP receptor antagonism. Thus,
pinane-TXA2 (PTA2) was reported to block both constriction of
cat coronary artery and aggregation of human platelets elic-
ited by U-46619 (Nicolaou et al., 1979). However, this ana-
logue often behaves as a partial agonist, inducing a 60%
maximal activation in some TP systems (Jones et al., 1982;
Tymkewycz et al., 1991). More useful TP antagonists emerged
from additional modification of the w-chain. The pinane ana-
logue ONO-11120 (Figure 8) is a true antagonist (Katsura
et al., 1983), while EP-045 (Jones et al., 1982) and EP-092
(Armstrong et al., 1985) were developed from the PG endop-
eroxide analogue, 9,11-etheno PGH2, also a partial agonist
(Jones et al., 1982). SQ-29548 (Ogletree et al., 1985) and BMS-
180291 (Ogletree et al., 1993) have a hybrid bicyclic system
(oxabicyclo[2.2.1]heptane) and differ from the natural ago-
nists in the cis-orientation of the a and w-chains. While
GR-32191 (Lumley et al., 1989) and ICI-192605 (Brewster
et al., 1988) still retain a prostanoid skeleton, other TP antago-
nists do not, including L-655240 (related to indomethacin;
Hall et al., 1987), BM-13505 (daltroban; Yanagisawa et al.,
1987), KW-3635 (Karasawa et al., 1991a,b), AA-2414 (seratro-
dast; Ashida et al., 1989) and even the KATP-channel blocker
glibenclamide (Cocks et al., 1990). The attractively simple
chemistry involved in the synthesis of daltroban has spurred
the development of higher-potency, non-prostanoid antago-
nists containing a (p-halo)-benzenesulphonylaminomethyl
residue at a critical distance from the carboxylate, for
example, Z-335 (Tanaka et al., 1998) and S-18886 (terutroban;
Cimetière et al., 1998). A similar residue in prostanoid
molecules such as S-145 (domitroban; Mihara et al., 1989),
I-SAP (Naka et al., 1992) (Figure 8), ONO-NT-126 (p-bromo;
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Nakahata et al., 1990) and oxa- and thia-bicyclo[3.1.0]hexane
derivatives (Kamata et al., 1990) also confers high TP
affinity.

Differences in antagonist affinity constants between plate-
let and vascular smooth systems have stimulated much
debate about the existence of TP receptor subtypes (Mais et al.,
1985; 1988; Swayne et al., 1988; Morinelli et al., 1989; Masuda
et al., 1991; Tymkewycz et al., 1991; Folger et al., 1992).
Species heterology, the difficulty of distinguishing partial
agonism from functional antagonism, and incomplete equili-
bration of high-affinity antagonists have been confounding
factors. For example, antagonism of U-46619 by BMS-180291

on human platelets was surmountable for the shape-change
response, but insurmountable for aggregation; the rate of
aggregation was also slowed (Ogletree et al., 1993). Similar
profiles had been reported previously for EP-092 (Armstrong
et al., 1985) and GR-32191 (Lumley et al., 1989) on human
platelets, and for EP-169 and AH-23848 on human and rat
platelets, but not on rabbit platelets where their affinities are
lower (Tymkewycz et al., 1991). However, against the slow-
acting high-affinity TP agonist EP-171 (Jones et al., 1989),
GR-32191 did not alter the aggregation rate (Lumley et al.,
1989). It is likely that slow dissociation of a high-affinity
antagonist from the TP receptor retards U-46619 occupancy

Figure 8 TP receptor antagonists. Conversion of PGH2 to TXA2 by thromboxane synthase (TXS) is shown in the box; a and w represent natural
2-series side-chains. The pinane-thromboxane residue (related to 1(S)-a-pinene) is shown in blue; the 6-oxabicyclo(2.2.1)heptane system is in
red. AH-23848 has the same a- and w-chains as GR-32191. Benzenesulphonamide residues present in both prostanoid and non-prostanoid
antagonists are shown in cerise. TP antagonists with two types of additional activity are presented. (A) IP agonism is conferred by the
diphenylmethyl-heteroatomic unit in the bicyclo[2.2.2]octene analogue EP-157. (B) TXS inhibitory activity is conferred by the pyridin-3-yl
residue (green) in isbogrel and ZD-1542 and by a similar replacement for ring A in relatives of GR-32191 (e.g. GR-83783; see text). Additionally,
the broken arrows (lower right) typically indicate attachment of part of a TP antagonist to isbogrel (or ridogrel) to generate novel combined
TP antagonist/TXS inhibitors; the tether (0–11 carbon units) has also been attached to the left-hand phenyl ring of ICI-192605 (2–8 carbon
units) (Ackerley et al., 1995).
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in the early stage of the aggregation response thereby favour-
ing the disaggregation process and insurmountability; in con-
trast, shape change, which does not fade, allows a true
measure of the equilibrium state. In pig platelets, longer pre-
incubation times were required for S-145 than SQ-29548
owing to the smaller association rate constant of the former
antagonist (Mihara et al., 1989). BMS-180291 also had a
Schild slope greater than unity on guinea pig aorta (Zhang
et al., 1996). However, in the low nanomolar range BMS-
180291 requires up to 2 h to reach steady state on the aorta
(Jones et al., 2008) and the non-ideality may simply reflect
retarded diffusion of a high-affinity ligand (pA2 = 9.8, Table 2)
through the extracellular space.

Radioligand binding studies of TP receptors coincided with
these functional measurements. Two saturable binding
sites were identified on human platelets using [3H]-9,11-
epoxymethano PGH2, the first radioligand developed for the
TP receptor (Armstrong et al., 1983; Pollock et al., 1984).
Binding to the more abundant site was displaced by EP-045
at concentrations similar to those required to inhibit
[3H]-phosphatidate formation, Ca2+ elevation and aggregation
induced by the TP agonist. A less abundant higher-affinity
binding site was also identified, but it did not show the
characteristic preference for a 15(S) configuration in the
natural prostanoid w-chain. The presence of high- and low-
affinity binding sites for agonist (but not antagonist) ligands
was also evident using [3H]-trimetoquinol (Ahn et al., 1988)
and [3H]-SQ-29548 (Hedberg et al., 1988). Further studies
showed that the high-affinity site was associated with the
platelet shape change (and increase in cytosolic Ca2+), while
the lower-affinity site was associated with aggregation [and
activation of phospholipase C (PLC)] (Dorn, 1989; Takahara
et al., 1990). [3H]-GR-32191 played an important role in the
elucidation of these relationships by binding reversibly to the
‘shape change site’ and irreversibly to the ‘aggregation site’
(Takahara et al., 1990). It is difficult to explain this irrevers-
ibility given that GR-32191 does not obviously contain a
chemically reactive group (Figure 8). Detailed studies have
shown that 30-min exposure of human platelets to GR-32191
resulted in about 50% loss of binding sites for either [3H]-GR-
32191 or [3H]-SQ-29548, while neither SQ-29548 nor
BM-13177 affected Bmax. It was speculated that GR-32191
binds to internalized TP receptors (Armstrong et al., 1993); the
zwitterionic nature of GR-32191 at neutral pH may be rel-
evant. A light-activated, covalent-bonding TP antagonist,
azido-BSP, also discriminated these platelet sites by blocking
aggregation but not shape change induced by U-46619
(Zehender et al., 1988). The subsequent identification of a
second TP receptor isoform (TPb) from a human umbilical
vein endothelial cDNA library (Raychowdhury et al., 1994)
and the detection of mRNA for the a and b isoforms in human
platelets (Hirata et al., 1996) would appear to complete the
argument. However, these isoforms, which arise by alternative
gene splicing and differ only in their cytoplasmic tails, do not
show the ligand discrimination typical of the high- and low-
affinity binding sites. Finally, significant expression of the TPa
isoform only was found in human platelets (Habib et al.,
1999).

The seventh transmembrane domain (TM-7), which is
strictly conserved in all the TP receptors characterized to date,

is critical to TP agonist and antagonist function. Point muta-
tions in this domain in the human TP receptor severely sup-
pressed the binding of SQ-29548 (Funk et al., 1993b).
Chimeric substitutions of the human TP receptor with the
corresponding TM 1, 2 and 4 from rat resulted in modest
suppression of SQ-29548 binding, lesser suppression of I-BOP
(TP agonist) binding, and a poor correlation between the data
sets (Dorn et al., 1997).

Several different inhibitory properties have been combined
with specific TP antagonism, either by chance or deliberately.
For example, TP antagonists based on PGH2 with
diphenylmethyl-oxime (e.g. EP-157, Figure 8) or
diphenylmethyl-azine residues in the w-chain were found to
activate IP receptors in platelet and vascular systems (Arm-
strong et al., 1986; 1989; Jones et al., 1993). A diaryl-
hetero(cyclic) moiety is critical to the IP agonism (Jones et al.,
1993). Related compounds lacking a prostanoid ring system
(e.g. octimibate) showed similar profiles (Merritt et al.,
1991a,b), with BMY-45778 being the most potent of a large
series of non-prostanoid prostacyclin mimetics synthesized
by Bristol-Myers Squibb (Meanwell et al., 1994; Seiler et al.,
1997). Accurate estimation of the TP antagonist affinities of
many of these compounds is difficult owing to their high
lipophilicity, slow onset/offset (Jones et al., 1997) and, in
certain instances, an ability to inhibit (non-prostanoid)
Gq-PLC-driven responses (Chow et al., 2001).

Combining TP receptor antagonism with thromboxane
synthase (TXS) inhibition has been an extensively investi-
gated strategy, with the aim of balancing antagonistic/
inhibitory activities several hours after dosing. TXS inhibition
is expected to divert PGH2 to PGD2 and PGI2 (Vermylen et al.,
1981; Smith, 1982), which both inhibit human platelet acti-
vation, and usually requires the presence of either a (N)-
imidazole as found in dazoxiben (Randall et al., 1981) or a
pyridin-3-yl group as in ridogrel (Hoet et al., 1990) and the
related CV-4151 (isbogrel, Figure 8, Imura et al., 1988).
ZD-1542 (Brownlie et al., 1993) is a pyridin-3-yl derivative
related to ICI-192605, while GR-83783 (Campbell et al.,
1991a), a relative of GR-32191, has a 4-(pyridin-3-yl)-phenyl
moiety (Figure 8). The (N)-benzimidazole KW-3635 did not
inhibit cow platelet TXS at 100 mM (Miki et al., 1992). Several
groups have successfully expanded the biaryl region of
ridogrel (Cozzi et al., 1994) or combined sulotroban/
daltroban moieties with ridogrel/isbogrel moieties (Figure 8),
resulting in GR-108774 (Campbell et al., 1991b), CGS-22652
(Bhagwat et al., 1993) and compound 36 in Soyka et al.
(1993). In addition, Zeneca have used various tethers to
connect the whole or part of the ICI-192605 nucleus to either
a dazoxiben or an isbogrel nucleus (Figure 8) (Ackerley et al.,
1995). BM-531 and BM-573 are combined TP antagonist/TXS
inhibitors lacking a carboxylic acid group (Dogné et al., 2001;
Rolin et al., 2001).

Finally, YM-158 has similar high affinity for TP and cys-LT
receptors in guinea pig trachea (Arakida et al., 1998) (see
later).

Therapeutic applications
The discovery of thromboxanes was Nobel prize-winning
research. Thromboxane A2 is undoubtedly important in
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regulating cardiovascular homeostasis. Its biosynthesis by
platelets and other tissues and highly potent actions on plate-
lets and blood vessels provided a strong impetus for the devel-
opment of TP antagonists (Patrono, 1990; Patscheke, 1990;
Davis-Bruno and Halushka, 1994). However, these agents
have not been a success to date. Clear evidence of benefit was
not established in early studies (Misra, 1994), but economics
was also a major factor. Low-dose aspirin, which targets plate-
let TXA2 synthesis by irreversibly acetylating COX-1, has
proven benefits (Patrignani et al., 1982; Fitzgerald et al., 1983;
Reilly and Fitzgerald, 1987). More potent TP antagonists, with
superior pharmacokinetic profiles, were developed, but these
also do not appear successful at the commercial level. The
reasons are not entirely clear. At the pharmacological level, a
TP antagonist would appear preferable to low-dose aspirin,
especially in the light of recent events surrounding COX-2
inhibitors.

1. The clinical side effects associated with COX-2 inhibitor
therapy reveal the TXA2/PGI2 balance as more delicate to
perturbation and more important than was previously
believed.

2. Low-dose aspirin does not always have the required TXS/
PGIS selectivity (Knapp et al., 1988; Patscheke, 1990).

3. Isoprostanes are alternative endogenous human TP recep-
tor agonists and hence blockable by TP antagonists: their
non-enzymatic formation would not be affected by aspirin,
other COX inhibitors or TXS inhibitors (Kawikova et al.,
1996; Gardan et al., 2000; Janssen et al., 2001).

4. TP antagonists exhibit cardio-protective effects that are not
shared by aspirin (Gomoll and Ogletree, 1994; Grover
et al., 1994).

Given these considerations, a potent, highly selective TP
antagonist may be worth revisiting in large-scale clinical trials
on cardiovascular disease. As oxidative stress and resultant
formation of isoprostanes is now linked to atherogenesis
(Dogné et al., 2005), an initially unappreciated dimension to
the TXA2/PGI2 balance and cardiovascular risk is made mani-
fest. Specifically, the clinical outcomes would be related to
stroke, heart attack and angina. Thromboxane A2 has also
been implicated in hypertension occurring in pregnancy and
TP antagonists (/TXS inhibitors) have been proposed as treat-
ments for pre-eclampsia (Keith et al., 1993; Dogné et al.,
2006).

In addition to the vasculature, TXA2 potently stimulates
other smooth muscles to contract. Thus, TP antagonists have
been proposed as potential therapeutic modalities for asthma.
Seratrodast (Figure 8) has received marketing approval for
treatment of asthma in Japan (see Rolin et al., 2006). Rama-
troban and seratrodast have also been evaluated in Phase III
clinical trials in the USA (Dogné et al., 2002). The therapeutic
rationale is to ameliorate the marked bronchoconstriction
produced by TXA2 and its involvement in bronchial hyper-
esponsiveness. However, TXA2 and other prostanoids that
activate TP receptors (e.g. PGD2) are not the only powerful
bronchoconstrictors generated in asthma and it is unlikely
that a TP antagonist alone would be adequate therapy in most
patients. In this context, SQ-29548 and the cys-LT antagonist
montelukast acting alone inconsistently inhibited contrac-

tion of human lung slices in culture challenged with antigen;
a combination of the antagonists was much more effective,
while an H1 antagonist was ineffective (Wohlsen et al., 2003).
A combined TP/cys-LT antagonist (e.g. YM-158) may have
greater clinical efficacy.

Activation of EP3, FP, TP and possibly EP1 receptors causes
contraction of the pregnant human myometrium, while DP1,
EP2 and IP receptors mediate relaxation (Senior et al., 1993).
Given this scenario, the potential of selective TP antagonists
for treating labour-associated disorders, such as pre-term
labour, would seem low. Recent studies on human myome-
trial specimens obtained at parturition provide a new perspec-
tive. It appears that there is a marked alteration in prostanoid
receptor functional dynamics at term, prior to and following
the onset of labour (Fischer et al., 2008). Comparing the
effects of U-46619, PGE2 and PGF2a, a loss of FP but not TP
responsiveness was apparent following the onset of labour
(Fischer et al., 2008). As PGE2 produces a net inhibition of
myogenic activity, this leaves TXA2 as the only COX-derived
product capable of exerting a contractile effect during labour.
The role of TXA2 in human parturition may be greater than
previously envisaged.

The involvement of TXA2 in inflammatory bowel disease
may be significant (Rampton and Collins, 1993). The aetiol-
ogy of ulcerative colitis and Crohns’ disease is not fully under-
stood, but initiating factors in pre-disposed individuals elicit
severe and prolonged inflammation of the gut mucosa.
Early studies with ridogrel and picotamide, combined TP
antagonist/TXS inhibitors, claimed some clinical improve-
ment associated with reduced TXA2 (TXB2) release (Rampton
and Collins, 1993). Given the multifactorial nature of these
diseases and the number of other eicosanoids purported to be
involved, pronounced beneficial effects of TP antagonists
alone seem unlikely.

Evidence is available that activation of the TP receptor is
implicated in chronic persistent cough (CPC). This is a detri-
mental and debilitating condition that serves no obvious
function (French et al., 2002), afflicts 9–33% of the popula-
tion in Europe and North America and for which no satisfac-
tory treatment is currently available (see Chung and Pavord,
2008). Thus, the mechanisms underlying CPC and the
identification of new anti-tussive agents present a grossly
neglected and unmet clinical need.

In humans, PGs have high tussive potency suggesting that
they may be released locally in a variety of respiratory diseases
where cough is a characteristic symptom. In subjects with
asthma, both indomethacin and ozagrel (OKY-046; a TXS
inhibitor) increase the threshold for cough when compared
with placebo, suggesting that TXA2 may be one of the cyclo-
oxygenase products that sensitize the cough reflex (Fujimura
et al., 1995). Indomethacin and ozagrel also attenuate cough
in subjects with hypertension treated with angiotensin-
converting enzyme inhibitors (Fogari et al., 1992; Malini
et al., 1997; Umemura et al., 1997). Thus, the potential appli-
cation for TP antagonists in alleviating CPC is clear. Indeed, in
an animal model of asthma-related cough, the TP antagonist,
seratrodast (Figure 8) significantly suppressed cough induced
by capsaicin (Xiang et al., 2002). Moreover, in 16 patients
with stable chronic bronchitis, seratrodast (80 mg b.i.d. for 28
days) significantly increased the threshold for capsaicin-
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induced cough (Ishiura et al., 2003). Finally, ramatroban is
reported to attenuate cough in subjects with cough variant
asthma (Kitamura et al., 2003), which could be due to block-
ade of both TP and DP2 receptors (Gardiner and Browne,
1984).

A role for TXA2 in cancer of the female breast and genital
tract has also been suggested. Findings are reminiscent of the
TXA2/PGI2 balance in the cardiovascular system: TXA2 pro-
motes tumour growth and metastasis, while PGI2 exerts a
protective effect by maintaining vascular and platelet homeo-
stasis (Honn and Meyer, 1981; Nigam et al., 1992). A signifi-
cant role in ovarian, cervical and other gynaecological cancers
may exist (Nigam et al., 1992), but there remains insufficient
evidence to assign a pivotal role.

Thromboxanes have also been implicated in a number of
other conditions, including glomerulonephritis (Patrono,
1990; Wardle, 1999), allergic conjunctivitis (Woodward et al.,
1990b), allergic rhinitis (Misra, 1994), diabetes (Dogné et al.,
2006), septic shock and pulmonary embolism (Ghuysen
et al., 2005). In summary, while numerous potential uses have
been proposed over several years, clinical and economic
success has been modest to date despite the availability of
extremely potent and long-acting TP antagonists. What are
the future therapeutic prospects? An argument could be made
for superiority over low-dose aspirin. In order to establish this,
extensive clinical trials would be essential. The bigger concern
for the pharmaceutical industry would be ‘how much better
would a TP antagonist perform compared with low-dose
aspirin?’ If the difference is small, economics will dictate the
fate of excellent TP antagonists. Perhaps the brightest new
star in the galaxy of therapeutic options is the treatment of
pre-term labour, given that TXA2 is now known to be the
major prostanoid involved in parturition. The only potential
side effect that may occur with TP antagonist therapy is pos-
sible enhancement of hypersensitivity reactions (Narumiya,
2003). This would not be a major burden under most
circumstances.

Therapeutic future of prostanoid receptor
antagonists

The future for selective prostanoid antagonists does not
appear to provide an encouraging scenario. Potent and selec-
tive antagonists for every prostanoid receptor are now avail-
able, with the exception of the EP2 subtype. Some selective
antagonists have received regulatory approval as drugs but
these instances tend to be few and not worldwide. In this
category are DP2 and TP antagonists. Drug approval filings/
development have been discontinued on numerous TP
antagonists, EP1 antagonists and, most recently, an EP4

antagonist. Arguments in favour of more potent and irrevers-
ible antagonists have been put forward but, in the global
scheme of drug research, the current drugs seem adequate at
the very least.

DP2 antagonists apart, of those drugs designed as selective
for a single prostanoid receptor, the TP blockers still appear to
be the best prospect. This would require revisiting cardiovas-
cular studies and daring to directly compare with low-dose

aspirin. The use of the TP antagonists for treating pre-term
labour and even perhaps primary and secondary dysmenor-
rhoea should be contemplated in the light recent evidence
(Fischer et al., 2008). This is, however, a rather narrow spec-
trum of utility and does not fulfil three decades of high
expectation.

Straightforward consideration of the current situation does
not favour the widespread therapeutic utility of highly selec-
tive prostanoid receptor antagonists. Stated simply, where
COX inhibitors are clinically effective, selective antagonists
are not. This is not really astonishing. There are five major
prostanoids biosynthesized by COX and additional active
metabolites (e.g. 13,14-dihydro-15-oxo PGD2, 19(R)-OH
PGE2). The isoprostanes are formed by non-enzymatic
oxidation of arachidonic acid (Morrow et al., 1990; 1994).
Finally, there are the PG-ethanolamides (prostamides) and
PG-glyceryl esters, which are COX-2 products of the endocan-
nabinoids anandamide and 2-arachidonyl glycerol. Expecta-
tions that one prostanoid and one dedicated receptor play a
dominant, all-important role in most disease processes are
lofty. It is unlikely that this all distils down to one important
receptor activity in most diseases: a receptor widely control-
ling synergy or solely mediating a critical pathophysiological
event.

Individual PGs and their receptors may play compensatory,
fail-safe roles. Individual prostanoids may act sequentially to
initiate and sustain disease states. They may subserve comple-
mentary roles. The role of DP1 and DP2 receptors in allergy,
notably allergic rhinitis, provides an excellent example of two
receptors behaving in a complementary manner to initiate
and maintain the disease state. The combination of DP1/DP2

antagonism in a single molecule appears a very promising
therapeutic approach (Pettipher, 2008) and one that appears
feasible. Equally so, combining TP and EP3 antagonistic prop-
erties to prevent both platelet activation and vasoconstriction
in cardiovascular disease states appears to be an achievable
goal. Prostanoid-based drugs for pre-term labour may require
even more versatility, with ideal therapy perhaps embodying.
the following attributes in a single molecule: (i) TP antago-
nism, (ii) EP3 antagonism to block cervical ripening and (iii)
EP2 agonism to provide a tocolytic effect. Such a molecule
would be a formidable medicinal chemistry challenge.
Further challenges relate to diseases where COX inhibitors are
widely and successfully used, because the ideal spectrum of
antagonist properties may not be entirely clear. If the promise
of prostanoid-based therapeutics is ever to be fulfilled, the role
of prostaglandins may need to be carefully thought-out on a
disease-by-disease basis.
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